use euclid divissin lemma ,show that cube of any positive interger in the form of 7m 7m+1,7m+6
Answers
let a^3 be a cube of any positive integer.
then a is of the form 7q,7q+1,7q+2,7q+3,7q+4,7q+5 or 7q+6.
if a=7q,
a^3=7q^3=7m wherem=49(q)^3
if a=7q+1,
a^3=(7q+1)^3
=7q^3+
sorry bro I am little a bit busy.
i will answer u sometime.
HOPE IT MAY HEPL YOU
Answer:
Step-by-step explanation:
Given use euclid divissin lemma ,show that cube of any positive interger in the form of 7m 7m+1,7m+6
According to euclid division lemma we have
a = bq + r
let us consider b as 7 and let r = 0, 1, 2, 3,......
When r = 0,
a = 7q + 0
a = 7q
Cubing both sides we get
a^3 = (7q)^3
a^3 = 343q^3
When r = 1
a = 7q + 1
Cubing both sides we get
a^3 = (7q + 1)^3
We know (a + b)^3 = a^3 + b^3 + 3ab(a + b)
(7q + 1)^3 = (7q)^3 + 1^3 + 21q(7q + 1)
= 343q^3 + 147q^2 + 21q + 1
So a^3 = 7( 49q^3 + 21q^2 + 3q) + 1
a^3 = 7m + 1
When r = 6
a = 7q + 6
Cubing both sides we get
a^3 = (7q + 6)^3
We know (a + b)^3 = a^3 + b^3 +3ab(a + b)
(7q + 6)^3 = (7q)^3 + 6^3 + 42q(7q + 6)
= 7(49q^3 + 127q^2 + 108q) + 216
a^3 = 7m + 216
So 7m + 6 does not form a cube.