Use Euclid's algorithm to find HCF of 1190 and 1445 . Express the HCF in the form 1190m + 1445n .
Answers
Answered by
552
Solution :-
1445 = 1190*1 + 255
1190 = 255*4 + 170
255 = 170*1 + 85
170 = 85*2 + 0
So, now the remainder is 0, then HCF is 85
Now,
85 = 255 - 170
(1445 - 1190) - (1190 - 255*4)
⇒ 1445 - 1190 - 1190 + 255*4
⇒ 1445 - 1190*2 + (1445 - 1190)*4
⇒ 1445 - 1190*2 + 1445*4 - 1190*4
⇒ 1445*5 - 1190*6
⇒ 1190*(- 6) + 1445*5
1190m + 1445n , where m = - 6 and n = 5
Answer.
1445 = 1190*1 + 255
1190 = 255*4 + 170
255 = 170*1 + 85
170 = 85*2 + 0
So, now the remainder is 0, then HCF is 85
Now,
85 = 255 - 170
(1445 - 1190) - (1190 - 255*4)
⇒ 1445 - 1190 - 1190 + 255*4
⇒ 1445 - 1190*2 + (1445 - 1190)*4
⇒ 1445 - 1190*2 + 1445*4 - 1190*4
⇒ 1445*5 - 1190*6
⇒ 1190*(- 6) + 1445*5
1190m + 1445n , where m = - 6 and n = 5
Answer.
Answered by
123
Given:
Two numbers are 1190 and 1445.
To find:
HCF of 1190 and 1445 by using Euclid's algorithm and express the HCF in the form 1190m+1445n.
Solution:
By using Euclid's algorithm
Hence, HCF of 1190 and 1445=85
Where m=-6,n=5
Similar questions