Math, asked by rakesh5416, 1 year ago

use euclid's division algorithm to find whether the pair of numbers 615 and 154 is co prime or not

Answers

Answered by mysticd
41

Answer:

\red{ Given \: numbers \:615 \: and \: 154 \: are }

 \green { Co-prime }

Step-by-step explanation:

 \underline { \pink { Co-prime }}

 If \: HCF \: of \: two \: numbers \: equal \: to \: 1 \\ then \: they \: are \: called \: Co-prime.

 Given \: numbers \: 615 \: and \: 154

 Here , 615 > 154

 Start \: with \:the \: larger \:integer \: , that \:is, \\615. Apply \: the \: Euclid's \: division \: algorithm \\we \:get

 615 = 154 \times 3 + 53

 Since, \: the \: remainder \: 53 ≠ 0 , we \\apply \: the \: division \: algorithm \:to \: 53, to \:get

 154 = 53 \times 2 + 48

 53 = 48 \times 1 + 5

 48 = 5 \times 9 + 3

 5 = 3\times 1 + 2

 3 = 2\times 1 + 1

 2 = 1\times 2 + 0

 The \: remainder \: has \: now \: become \\zero, \: so \: our \: procedure \: stops .

 Since, the \: divisor \: at \:this \:stage \:is \: 1,\\HCF \: of \: 615\: and \: 154 \: is \: 1 .

Therefore.,

\red{ Given \: numbers \:615 \: and \: 154 \: are }

 \green { Co-prime }

•••♪

Similar questions