Math, asked by summu5, 1 year ago

use Euclid's division lema to show that the cube of any positive integer is of the form 9m,9m+1 or 9m+8

Answers

Answered by Bansarikikz
2
Let a be any positive integer and b = 3

a = 3q + r, where q ≥ 0 and 0 ≤ r < 3

a= 3q or 3q+1or 3q+2

Therefore, every number can be represented as these three forms. There are three cases.

Case 1: When a = 3q,

a^3= 3q^3= 27q^3 = 9(3 q^3)= 9m

Where m is an integer such that m = 3q^3

Case 2: When a = 3q + 1,

a3 = (3q +1)3

a3 = 27q3 + 27q2 + 9q + 1

a3 = 9(3q3 + 3q2 + q) + 1

a3 = 9m + 1

Where m is an integer such that m = (3q3+ 3q2 + q)

Case 3: When a = 3q + 2,

a3 = (3q +2)3

a3 = 27q3 + 54q2 + 36q + 8

a3 = 9(3q3 + 6q2 + 4q) + 8

a3 = 9m + 8

Where m is an integer such that m = (3q3+ 6q2 + 4q)

Therefore, the cube of any positive integer is of the form 9m, 9m + 1, 
or 9m + 8.

Answered by Anonymous
4

Step-by-step explanation:

Let a be any positive integer and b = 3

a = 3q + r, where q ≥ 0 and 0 ≤ r < 3

∴ r = 0,1,2 .

Therefore, every number can be represented as these three forms. There are three cases.

Case 1: When a = 3q,

Where m is an integer such that m =

Case 2: When a = 3q + 1,

a = (3q +1) ³

a = 27q ³+ 27q ² + 9q + 1

a = 9(3q ³ + 3q ² + q) + 1

a = 9m + 1 [ Where m = 3q³ + 3q² + q ) .

Case 3: When a = 3q + 2,

a = (3q +2) ³

a = 27q³ + 54q² + 36q + 8

a = 9(3q³ + 6q² + 4q) + 8

a = 9m + 8

Where m is an integer such that m = (3q³ + 6q² + 4q)

Therefore, the cube of any positive integer is of the form 9m, 9m + 1, or 9m + 8.

Hence, it is proved .

Similar questions