use euclid's division lemma to find the h.c.f of 858 , 325 . express it in the form of 858x+325y.
Answers
The HCF of 858, 325 is 13 and it can be written as 858 x 11 + 325 x (-29).
- HCF of given numbers is the highest common factor of given numbers.
- Finding HCF using Euclid's Division Algorithm:
- Statement: If there are two positive integers a, b then there exists two unique integers q and r such that
a = bq + r (0 ≤ r < b)
PROBLEM:
Given numbers are 858, 325
858 = 325 x 2 + 208 ---------------(1)
325 = 208 x 1 + 117 ---------------(2)
208 = 117 x 1 + 91 ----------------(3)
117 = 91 x 1 + 26 -----------------(4)
91 = 26 x 3 + 13 ----------------(5)
26 = 13 x 2 + 0
∴ HCF of 858, 325 is 13.
Expressing 13 in the form of 858x + 325y:
13 = 91 - 26 x 3 [From (5)]
13 = 91 - (117 - 91 x 1) x 3 [From (4)]
13 = 91 - 117 x 3 + 91 x 3
13 = 91 x 4 - 117 x 3
13 = (208 - 117 x 1) x 4 - 117 x 3 [From (3)]
13 = 208 x 4 - 117 x 4 - 117 x 3
13 = 208 x 4 - 117 x 7
13 = 208 x 4 - (325 - 208) x 7 [From (2)]
13 = 208 x 4 - 325 x 7 + 208 x 7
13 = 208 x 11 - 325 x 7
13 = (858 - 325 x 2) x 11 - 325 x 7 [From (1)]
13 = 858 x 11 - 325 x 22 - 325 x 7
13 = 858 x 11 + 325 x (-29)