Math, asked by mathematics3456810, 2 months ago

Use Euclid's division lemma to show that the cube of any positive integer is of the form
9m, 9m +1 or 9m+8.​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Let a be any positive integer.

Then,

  • By Euclid Division Lemma, corresponding to positive integers a and 3, there exist unique integers q and r such that a = 3q + r, where r = 0, 1, 2.

Now, 3 cases arises,

Case :- 1

\rm :\longmapsto\:When \: a \:  =  \: 3q

So,

\rm :\longmapsto\: {a}^{3} =  {(3q)}^{3}

\rm :\longmapsto\: {a}^{3} =  {27q}^{3}

\rm :\longmapsto\: {a}^{3} =  {9 \times 3q}^{3}

\bf :\longmapsto\: {a}^{3} =  9m \:  \:  \:  \: where \: m \:  = {3q}^{3}

Case :- 2

\rm :\longmapsto\:When \: a \:  =  \: 3q + 1

So,

\rm :\longmapsto\: {a}^{3} =  {(3q + 1)}^{3}

\rm :\longmapsto\: {a}^{3} =  {27q}^{3} + 1 + 3 \times 3q \times1 (3q + 1)

 \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \purple{\sf \because \:  {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}}

\rm :\longmapsto\: {a}^{3} = 27 {q}^{3} + 1 + 9q(3q + 1)

\rm :\longmapsto\: {a}^{3} = 27 {q}^{3} + 1 + {27q}^{2}+ 9q

\rm :\longmapsto\: {a}^{3} = 27 {q}^{3}+ {27q}^{2}+ 9q + 1

\rm :\longmapsto\: {a}^{3} = 9(3{q}^{3}+ {3q}^{2}+ q) + 1

\bf:\longmapsto\: {a}^{3} = 9m + 1 \:  \:  \:  \: where \: m = 3{q}^{3}+ {3q}^{2}+ q

Case :- 3

\rm :\longmapsto\:When \: a \:  =  \: 3q + 2

So,

\rm :\longmapsto\: {a}^{3} =  {(3q + 2)}^{3}

\rm :\longmapsto\: {a}^{3} =  {27q}^{3} + 8 + 3 \times 3q \times2 (3q + 2)

 \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \purple{\sf \because \:  {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}}

\rm :\longmapsto\: {a}^{3} = 27 {q}^{3} + 8 + 18q(3q + 2)

\rm :\longmapsto\: {a}^{3} = 27 {q}^{3} + 8 + {54q}^{2}+ 18q

\rm :\longmapsto\: {a}^{3} = 27 {q}^{3} + {54q}^{2}+ 18q + 8

\rm :\longmapsto\: {a}^{3} = 9(3{q}^{3} + {6q}^{2}+ 2q) + 8

\bf :\longmapsto\: {a}^{3} = 9m+8 \:  \:  \: where \: m=3{q}^{3} + {6q}^{2}+ 2q

Hence,

  • Cube of any positive integer is of the form 9m or 9m + 1 or 9m + 8.

Additional Information :-

Fundamental Theorem of Arithmetic :-

  • This theorem states that Every composite number can be factorized as the product of their primes and this factorization is unique irrespective of their places of prime.

Euclid Division Lemma :-

  • Let a and b are two positive integers such that a > b, then there exist unique integers q and r such that a = bq + r where, r = 0, 1, 2, _____, r - 1.
Similar questions