use euclids division lemma to show that the cube of an any positive integer is either of the 9m,9m+1,9m+8 for some integer m
Answers
Question: Use Euclid's Division Lemma to show that the cube of an any positive integer is either of the 9m, 9m+1, 9m+8 for some integer m.
By using Euclid's Division Lemma,
a = bq + r where 0 ≤ r < b
Let b = 3,
⇒ a = 3q + r where 0 ≤ r < b
And r = 0, 1, 2
Case 1
When r = 0,
a = bq + r
a = 3q
Cubing on both sides we get,
a³ = (3q)³
a³ = 9q³
Where m = q³
a³ = 9m → 1
Case 2
When r = 1,
a = bq + r
a = 3q + 1
Cubing on both sides we get,
a³ = (3q + 1)³
Using (a + b)³ = a³ + b³ + 3ab(a + b) we get,
a³ = (3q)³ + (1)³ + 3(3q)(1)[3q + 1]
a³ = 27q³ + 1 + 9q[3q + 1]
a³ = 27q³ + 1 + 27q + 9q
a³ = 27q³ + 27q + 9q + 1
a³ = 9(3q³ + 3q + q) + 1
If m = 3q³ + 3q + q
a³ = 9m + 1 → 2
Case 3
When r = 2,
a = bq + r
a = 3q + 2
Cubing on both sides we get,
a³ = (3q + 2)³
Using (a + b)³ = a³ + b³ + 3ab(a + b) we get,
a³ = (3q)³ + (2)³ + 3(3q)(2)[3q + 2]
a³ = 27q³ + 8 + 18q[3q + 2]
a³ = 27q³ + 8 + 54q² + 36q
a³ = 27q³ + 54q² + 36q + 8
a³ = 9(3q³ + 8q² + 4q) + 8
If m = 3q³ + 8q² + 4q
a³ = 9m + 8 → 3
From 1, 2 and 3 we can conclude that the cube of an any positive integer is either of the 9m, 9m+1, 9m+8 for some integer m.