Math, asked by girishenterprises62, 9 months ago

Use mathematical induction ,1/5.7 +1/7.9 +1/9.11 +........... upto n terms is equal to



please please solve this problem it's urgent​

Answers

Answered by amitnrw
0

Given : 1/5.7 +1/7.9 +1/9.11 +........... upto n terms

To find : Value

Solution:

1/(5.7)  + 1/(7.9)  + 1/(9.11)  +                              + 1/(2n+3)(2n+5)

= (1/2) { 2/(5.7)  + 2/(7.9)  + 2/(9.11)  +                              + 2/(2n+3)(2n+5)}

= (1/2) {1/5 - 1/7 + 1/7 - 1/9  +1/9 - 1/11  +                -1.(2n+3) +1/(2n +3) - 1/(2n + 5)}

= (1/2) { 1/5  -  1/(2n + 5)}

= (1/2) { 2n + 5 - 5} / 5(2n + 5)

= n /5(2n+5)

if using mathematical induction :

1/(5.7)  + 1/(7.9)  + 1/(9.11)  +                              + 1/(2n+3)(2n+5) =  n /5(2n+5)

n = 1

1/5.7  = 1/35

n /5(2n+5) = 1/(5)(7) = 1/35

let say  n = k

=> 1/(5.7)  + 1/(7.9)  + 1/(9.11)  +                              + 1/(2k+3)(2k+5) =k/5(2k+5)

to be proved n = k + 1

=>  1/(5.7)  + 1/(7.9)  + 1/(9.11)  +                           + 1/(2k+5)(2k+7) = (k+1)/5(2k+7)

LHS = k/5(2k+5) + 1/(2k+5)(2k+7)

= 1/(2k+5) { k/5  + 1/(2k + 7)

= 1/(2k + 5) { 2k² + 7k + 5 }/5(2k + 7)

=  1/(2k + 5) { 2k² + 2k + 5k + 5 }/5(2k + 7)

=  1/(2k + 5) { (k + 1)(2k + 5) }/5(2k + 7)

= (k+1)/5(2k+7)

= RHS

QED

Hence proved

Learn More:

Prove the following by using the principle of mathematical induction ...

https://brainly.in/question/17174526

Prove by mathematical induction that 1²+2²+3²+..........n²=n(n+1)(2n+ ...

https://brainly.in/question/13303043

Similar questions