Use mathematical induction to prove De Moivre's theorem
[ R (cos t + i sin t) ] n = R n(cos nt + i sin nt)
for n a positive integer.
Answers
STEP 1: For n = 1
[ R (cos t + i sin t) ] 1 = R 1(cos 1*t + i sin 1*t)
It can easily be seen that the two sides are equal.
STEP 2: We now assume that the theorem is true for n = k, hence
[ R (cos t + i sin t) ] k = R k(cos kt + i sin kt)
Multiply both sides of the above equation by R (cos t + i sin t)
[ R (cos t + i sin t) ] k R (cos t + i sin t) = R k(cos kt + i sin kt) R (cos t + i sin t)
Rewrite the above as follows
[ R (cos t + i sin t) ] k + 1 = R k + 1 [ (cos kt cos t - sin kt sin t) + i (sin kt cos t + cos kt sin t) ]
Trigonometric identities can be used to write the trigonometric expressions (cos kt cos t - sin kt sin t) and (sin kt cos t + cos kt sin t) as follows
(cos kt cos t - sin kt sin t) = cos(kt + t) = cos(k + 1)t
(sin kt cos t + cos kt sin t) = sin(kt + t) = sin(k + 1)t
Substitute the above into the last equation to obtain
[ R (cos t + i sin t) ] k + 1 = R k + 1 [ cos (k + 1)t + sin(k + 1)t ]
It has been established that the theorem is true for n = 1 and that if it assumed true for n = k it is true for n = k + 1.