Math, asked by shubhampandit70, 11 months ago

use sa chalu ho raha hai ​

Attachments:

Answers

Answered by godarpit123
0

Answer:

PLEASE MARK ME AS BRAINLIEST

Step-by-step explanation:

By Euclid's division lemma,

a=bq+r, 0≤r<b

Let a be any integer

b-3

Any integer can be 3q, 3q+1, 3q+2

CaseI-3q

Square- 9q^2=3m

CaseII-3q+1

Square-9q^2+1+6q

=3m+1

CaseIII-3q+2

Square-9q^2+4+12q

=3m+1

Hence any square integer can only be 3q or 3q+1

Hence proved

Answered by chrismatthew
0

By Euclid's division lemma,

a=bq+r, 0≤r<b

Let a be any integer

b-3

Any integer can be 3q, 3q+1, 3q+2

CaseI-3q

Square- 9q^2=3m

CaseII-3q+1

Square-9q^2+1+6q

=3m+1

CaseIII-3q+2

Square-9q^2+4+12q

=3m+1

Hence any square integer can only be 3q or 3q+1

Similar questions