Math, asked by up09180120303, 28 days ago

Use suitable identity to find each of rhe following product: 1= (3x-7)(3x-7). 2= (2/3m + 3/2n)(2/3m -3/2n)​

Answers

Answered by Jinskondoor
1

Answer:

1.  9x^{2} -42x+49

2. 4m-9n

Step-by-step explanation:

1

=(3x-7)(3x-7)\\=(3x-7)^{2}\\=(3x)^{2} -2*3x*-7+(7)^{2}\\=9x^{2} -42x+49

2

=(\frac{2}{3} m+\frac{3}{2} n)(\frac{2}{3} m-\frac{3}{2} n)\\\\=(\frac{2}{3}m - \frac{3}{2}n )\\\\=(\frac{2}{3} m*\frac{2}{2} -\frac{3}{2} *\frac{3}{3} )\\\\=(\frac{4}{6} m -\frac{9}{6} n)\\\\=(4m-9n)\\\\=4m-9n

Answered by sreedev20616
2

Step-by-step explanation:

1. The identity

 (a  -  b)(a  - b) =  {a}^{2}   - 2ab +  {b}^{2}

can be used

Here a = 3x

b = 7

 {(3x)}^{2}  - 2(3x)(7) +  {7}^{2}

9 {x}^{2}  - 42x + 49

2. The identity

(a + b)(a - b) =  {a}^{2}  -  {b}^{2}

can be used

Here

a =  \frac{2m}{3}  \:  \: b =  \frac{3n}{2}

 {( \frac{2m}{3} )}^{2}  -  { (\frac{3n}{2}) }^{2}

 =  \frac{4 {m}^{2} }{9}  -  \frac{ 9{n}^{2} }{4}

Similar questions