use the division method to the find the factors of the following
Answers
Answer:
Given :-
It is given to find whether which fraction should be added to \sf 5\frac{4}{15}5154 to get \sf 12\frac{3}{5}1253 .
Answer :-
Heyo! You can use the following Solution below;
Let's first solve the mixed fractions to improper fractions.
\begin{gathered} \sf{5 \frac{4}{15} } \: \: and \: \: 12 \frac{3}{5} \\ \end{gathered}5154and1253
\begin{gathered} \leadsto \sf{ \frac{79}{15} } \: \: and \: \: \frac{63}{5} \\ \end{gathered}⇝1579and563
⠀2. Now, we can form a linear equation ⠀⠀⠀to find the number which must be ⠀⠀⠀added to \sf \frac{79}{15}1579 to ⠀⠀⠀get \sf \frac{63}{5}563 .
\begin{gathered} \sf{x + \frac{79}{15} = \frac{63}{5} } \\ \end{gathered}x+1579=563
\begin{gathered} \leadsto \sf{x = \frac{63}{5} - \frac{79}{15} } \\ \end{gathered}⇝x=563−1579
\begin{gathered} \leadsto \sf{x = \frac{63 - 79}{30} } \\ \end{gathered}⇝x=3063−79
\begin{gathered} \leadsto \sf{ x = \frac{ - 16}{30} } \\ \end{gathered}⇝x=30−16
\begin{gathered} \leadsto \sf{x = \frac{ \cancel{ - 16}}{ \cancel{30}}} \\ \end{gathered}⇝x=30−16
\begin{gathered} \leadsto \sf{x = \frac{ - 8}{15} } \\ \end{gathered}⇝x=15−8
\dashrightarrow⇢ Hence, \bf \frac{-8}{15}15−8 must be added to \sf{5\frac{4}{15}}5154 to get \sf{12\frac{3}{5}}1253 .
\begin{gathered} \\ \end{gathered}