Math, asked by Raunak008, 8 months ago

use the formula Sn=a(r^n-1)/r-1 to find a1 and Sn if an=1000,r=10,n=7

Answers

Answered by BrainlyPopularman
10

ANSWER :

 \\  \longrightarrow \:  \:  {  \red { \boxed{ \bold{ a_{1}  =   {10 }^{ - 3}    }}}} \\

 \\  \longrightarrow\:  \:  { \red{ \boxed{ \bold{ s_{n} =   1111.111 }}}} \\

EXPLANATION :

GIVEN :

 \\  \longrightarrow \:  \:  { \bold{ n \th  \:  \: term(a_{n})  = 1000  }} \\

 \\  \longrightarrow \:  \:  { \bold{ common \:  \: ratio(r)  = 10  }} \\

 \\  \longrightarrow \:  \:  { \bold{ number \:  \: of \:  \: terms (n)  = 7  }} \\

TO FIND :

 \\  \longrightarrow \:  \:  { \bold{   a_{1} (first \:  \: term) \:  \: , \:  \:  S_{n}(sum \:  \: of \:  \: n \:  \: terms)   }} \\

SOLUTION :

▪︎ We know that nth term G.P. is –

 \\  \implies \:  \:  { \boxed{ \red{ \bold{ a_{n} =  (a_{1}) \:  {r}^{n - 1}    }}}} \\

• Now put the values –

 \\  \implies \:  \:  { \bold{ 1000  =  (a_{1}) \:  {10 }^{7 - 1}    }} \\

 \\  \implies \:  \:  { \bold{ 1000  =  (a_{1}) \:  {10 }^{6}    }} \\

 \\  \implies \:  \:  { \boxed{ \bold{ a_{1}  =   {10 }^{ - 3}    }}} \\

▪︎ We also know that –

 \\  \implies \:  \:  { \boxed{ \red{ \bold{ s_{n} =  \frac{a ({r}^{n }  - 1)}{r - 1}   }}}} \\

• Let's put the values –

 \\  \implies \:  \:  { \bold{ s_{n} =  \frac{( {10}^{ - 3})({10}^{7 }  - 1)}{10 - 1} }} \\

 \\  \implies \:  \:  { \bold{ s_{n} =  \frac{( {10}^{ - 3})(10000000  - 1)}{9} }} \\

 \\  \implies \:  \:  { \bold{ s_{n} =  \frac{( {10}^{ - 3})( \cancel {9999999})}{ \cancel9} }} \\

 \\  \implies \:  \:  { \bold{ s_{n} =   ({10}^{ - 3} )(1111111) }} \\

 \\  \implies \:  \:  { \boxed{ \bold{ s_{n} =   1,111.111 }}} \\

Answered by Anonymous
5

Given ,

  • Last term of GP (an) = (10)³
  • Common ratio (r) = 10
  • No. of terms (n) = 7

We know that , the first n terms of an GP is given by

 \star \:  \: \sf a_{n} = a {r}^{(n - 1)}

Thus ,

 \sf \Rightarrow  {(10)}^{3}  = a {(10)}^{7 - 1} \\  \\  \sf \Rightarrow {(10)}^{3}   = a {(10)}^{6}  \\  \\ \sf \Rightarrow a =  \frac{1}{ {(10)}^{3} }  \\  \\ \sf \Rightarrow a =  {(10)}^{ - 3}

Now , The sum of first n terms of an GP is given by

 \star \:  \: \sf S_{n} =  \frac{a( {r}^{n}  - 1)}{r - 1}

Thus ,

\sf \Rightarrow S_{7} =  \frac{ {(10)}^{ - 3} ( {10}^{7}  - 1)}{10- 1} \\  \\\sf \Rightarrow   S_{7} =      \frac{{(10)}^{ - 3}  \times  \cancel{9999999}}{ \cancel{9}} \\  \\\sf \Rightarrow S_{7} =  1111111 \times  {(10)}^{ - 3}   \\  \\\sf \Rightarrow   S_{7} = 1111.111</p><p></p><p>

 \therefore \sf \underline{ \bold{a =  {(10)}^{ - 3}  \:  \: and \: \: S_{7} = 1111.111}}

Similar questions