Use the given identity and solve. (1) (6x – 3y)2 :- Identity II (2) 105 X 102 :- Identity IV
Answers
Answered by
3
Solution
Hope this helps you ♡
Answered by
0
Answer:
Solution
\begin{gathered} \colorbox{silver}{ \boxed{ \begin{array}{c} \sf {(6x - 3y)}^{2} \\ \sf \: using \: identity \: {(a - b)}^{2} = {a}^{2} + {b}^{2} - 2ab \: \\ \sf \: \pmb{ \bf{(6x - 3y)}^{2} = 36 {x}^{2} + 9 {y}^{2} - 36xy } \\ \\ \hline105 \times 102 \\ \sf \: using \: identity \: (x + a)(x + b) = {x}^{2} + x(a + b) + ab \\ (100 + 5)(100 + 2) = {100}^{2} + 100(5 + 2) + 10 \\ = 10000 + 700 + 10 = \bf10710 \end{array}}}\end{gathered}
(6x−3y)
2
usingidentity(a−b)
2
=a
2
+b
2
−2ab
(6x−3y)
2
=36x
2
+9y
2
−36xy
(6x−3y)
2
=36x
2
+9y
2
−36xy
105×102
usingidentity(x+a)(x+b)=x
2
+x(a+b)+ab
(100+5)(100+2)=100
2
+100(5+2)+10
=10000+700+10=10710
Hope this helps you ♡
Similar questions