Math, asked by prakashkis, 1 year ago

Using arithmetic mean , write seven rational numbers between 12/5 and 10/3.

Answers

Answered by vishnuvardhan215
0
86/30 ,158/60 ,302/120 ,590/240,1166/480,2318/960,4622/1920.
Answered by SANDHIVA1974
1

Answer:

Seven rational numbers between \frac{12}{5} and \frac{10}{3} are \frac{151}{60},\frac{79}{30},\frac{55}{20},\frac{43}{15},\frac{179}{60},\frac{31}{10},\frac{193}{60}

Step-by-step explanation:

To find : Using arithmetic mean write seven rational numbers between \frac{12}{5} and \frac{10}{3} ?

Solution :

Using arithmetic mean between \frac{12}{5} and \frac{10}{3}

Here,

First term is  a=\frac{12}{5}

Last term is l=\frac{10}{3}

Number of terms n=9

The last term formula is l=a+(n-1)d

\frac{10}{3}=\frac{12}{5}+(9-1)d

\frac{10}{3}-\frac{12}{5}=8d

\frac{50-36}{15}=8d

d=\frac{14}{15\times 8}

d=\frac{7}{60}

So, the seven rational rational number are

a_2=a+d

a_2=\frac{12}{5}+\frac{7}{60}

a_2=\frac{144+7}{60}

a_2=\frac{151}{60}

a_3=a+2d

a_3=\frac{12}{5}+2(\frac{7}{60})

a_3=\frac{12}{5}+\frac{7}{30}

a_3=\frac{79}{30}

a_4=a+3d

a_4=\frac{12}{5}+3(\frac{7}{60})

a_4=\frac{12}{5}+\frac{7}{20}

a_4=\frac{55}{20}

a_5=a+4d

a_5=\frac{12}{5}+4(\frac{7}{60})

a_5=\frac{12}{5}+\frac{7}{15}

a_5=\frac{43}{15}

a_6=a+5d

a_6=\frac{12}{5}+5(\frac{7}{60})

a_6=\frac{12}{5}+\frac{35}{60}

a_6=\frac{179}{60}

a_7=a+6d

a_7=\frac{12}{5}+6(\frac{7}{60})

a_7=\frac{12}{5}+\frac{7}{10}

a_7=\frac{31}{10}

a_8=a+7d

a_8=\frac{12}{5}+7(\frac{7}{60})

a_8=\frac{12}{5}+\frac{49}{60}

a_8=\frac{193}{60}

Therefore, seven rational numbers between \frac{12}{5} and \frac{10}{3} are [tex]\frac{151}{60},\frac{79}{30},\frac{55}{20},\frac{43}{15},\frac{179}{60},\frac{31}{10},\frac{193}{60}

Similar questions