Math, asked by PragyaTbia, 1 year ago

Using binomial theorem, find the value of:
i) (102)⁴
ii) (1.1)⁵

Answers

Answered by SUDAR1234
3
please let me know if this answer is correct
Attachments:
Answered by hukam0685
10

Answer:

{(1.1)}^{5} = 1.61051 \\  \\ {(102)}^{4} = 108243216 \\  \\

Step-by-step explanation:

We know that Binomial Theorem is

 {(a + b)}^{n}  \\\\=  ^{n}C_0 \:  {a}^{n}  + ^{n}C_1 \:  {a}^{n - 1} b + ^{n}C_2 \:  {a}^{n - 2} {b}^{2}  + ... + ^{n}C_n \:  {b}^{n }  \\  \\ {(102)}^{4}  =  {(100 + 2)}^{4}  \\\\=  ^{4}C_0 \:  {(100)}^{4}  + ^{4}C_1 \:  {100}^{3} (2)+ ^{4}C_2 \:  {(100)}^{2} {2}^{2} \\ + ^{4}C_3 \:  {(100)}^{1} {2}^{3}+ ^{4}C_4 \:  {(100)}^{0} {2}^{4} +  \\  \\  = 100000000 + 4 \times 1000000 \times 2 + 6 \times 10000 \times 4 +\\ 4 \times 100 \times 8 + 1 \times 16 \\  \\  = 100000000 + 8000000 + 240000  + 3200  +  16 \\  \\ {(102)}^{4} = 108243216 \\  \\

{(1.1)}^{5}  =  {(1 + .1)}^{5} \\\\ =  ^{5}C_0 \:  {(1)}^{5}  + ^{5}C_1 \:  {1}^{4} (0.1)+ ^{5}C_2 \:  {(1)}^{3} {(0.1)}^{2}  \\+ ^{5}C_3 \:  {(1)}^{2} {(0.1)}^{3}+ ^{5}C_4 \:  {(1)}^{1} {(0.1)}^{4} +  ^{5}C_5 \:  {(1)}^{0} {(0.1)}^{5}\\  \\  = 1+ 5 \times1\times 0.1 + 10 \times 1 \times 0.01+ 10 \times 1 \times 0.001\\ + 5 \times 1 \times 0.0001 + 1 \times 0.00001 \\  \\  = 1 + 0.5 + 0.1  + 0.01  +  0.0005 + 0.00001\\  \\ {(1.1)}^{5} = 1.61051 \\   \\

Hope it helps you.

Similar questions