using cosine rule prove the sine rule
Answers
Refer to Attachment!!!!
- Using cosine rule, sine rule is proved below .
To Prove :- Using cosine rule prove the sine rule ?
- sin A/a = sin B/b = sin C/c
Formula used :-
cosine rule :-
- cos A = (b² + c² - a²) / 2bc
- cos B = (a² + c² - b²) / 2ac
- cos C = (a² + b² - c²) / 2ab
Algebra formula :-
- (a² + b² - 2ab) = (a - b)²
- (a² + b² + 2ab) = (a + b)²
- a² - b² = (a + b)(a - b)
Trigonometric formula :-
- sin²θ = (1 - cos²θ)
Proof :-
sin A / a :-
→ (sin A/a)²
→ sin² A / a²
using sin²θ = (1 - cos²θ) in the numerator,
→ (1 - cos²A) / a²
putting cosine rule for cos A in numerator now,
→ [1 - {(b² + c² - a²) / 2bc}²] / a²
→ [(2bc)² - (b² + c² - a²)] / (2bc)²•a²
using a² - b² = (a + b)(a - b) in numerator,
→ [(2bc + b² + c² - a²)(2bc - b² - c² + a²) / (2abc)²
→ [{(b² + c² + 2bc) - (a)²}{(a)² - (b² + c² - 2bc)}] / (2abc)²
using (a² + b² + 2ab) = (a + b)² and (a² + b² - 2ab) = (a - b)² in numerator,
→ [{(b + c)² - (a)²}{(a)² - (b - c)²}] / (2abc)²
using a² - b² = (a + b)(a - b) in numerator,
→ [(b + c + a)(b + c - a)(a + b - c)(a - b + c)] / (2abc)² ---------- Equation (1)
sin B / b :-
→ (sin B/b)²
→ sin² B / b²
using sin²θ = (1 - cos²θ) in the numerator,
→ (1 - cos²B) / b²
putting cosine rule for cos B in numerator now,
→ [1 - {(a² + c² - b²) / 2ac}²] / b²
→ [(2ac)² - (a² + c² - b²)] / (2ac)²•b²
using a² - b² = (a + b)(a - b) in numerator,
→ [(2ac + a² + c² - b²)(2ac - a² - c² + b²) / (2abc)²
→ [{(a² + c² + 2ac) - (b)²}{(b)² - (a² + c² - 2ac)}] / (2abc)²
using (a² + b² + 2ab) = (a + b)² and (a² + b² - 2ab) = (a - b)² in numerator,
→ [{(a + c)² - (b)²}{(b)² - (a - c)²}] / (2abc)²
using a² - b² = (a + b)(a - b) in numerator,
→ [(a + c + b)(a + c - b)(b + a - c)(b - a + c)] / (2abc)²
re - arranging the numerator now,
→ [(b + c + a)(b + c - a)(a + b - c)(a - b + c)] / (2abc)² ---------- Equation (2)
sin C / c :-
(sin C/c)²
→ sin² C / c²
using sin²θ = (1 - cos²θ) in the numerator,
→ (1 - cos²C) / c²
putting cosine rule for cos C in numerator now,
→ [1 - {(a² + b² - c²) / 2ab}²] / c²
→ [(2ab)² - (a² + b² - c²)] / (2ab)²•c²
using a² - b² = (a + b)(a - b) in numerator,
→ [(2ab + a² + b² - c²)(2ab - a² - b² + c²) / (2abc)²
→ [{(a² + b² + 2ab) - (c)²}{(c)² - (a² + b² - 2ab)}] / (2abc)²
using (a² + b² + 2ab) = (a + b)² and (a² + b² - 2ab) = (a - b)² in numerator,
→ [{(a + b)² - (c)²}{(c)² - (a - b)²}] / (2abc)²
using a² - b² = (a + b)(a - b) in numerator,
→ [(a + b + c)(a + b - c)(c + a - b)(c - a + b)] / (2abc)²
re - arranging the numerator now,
→ [(b + c + a)(b + c - a)(a + b - c)(a - b + c)] / (2abc)² ---------- Equation (3)
as we can see that,
→ Equation (1) = Equation (2) = Equation (3)
therefore,
→ (sin²A/a²) = (sin²B/b²) = (sin²C/c²)
since sine angles and length of sides of triangles are always positive, taking square root we get,
→ (sin A/a) = (sin B/b) = (sin C/c) (Proved)
Learn more :-
In the figure ∠ MNP = 90°, ∠ MQN = 90°, , MQ = 12 , QP = 3 then find NQ .
https://brainly.in/question/47411321
show that AB2 = AD.AC
https://brainly.in/question/47273910