Using Cosine rule prove the Sine rule.
Answers
Step-by-step explanation:
Law of cosines––––––––––––––
cosA=b²+c²−a² / 2bc
cosB=a²+c²−b² / 2ac
cosC=a²+b²−c² / 2ab
(sinA/a)²=sin2²A/a²
=1−cos²A/a²={1−(b²+c²−a²/2bc)²} / a²
=(2bc)²−(b²+c²−a²)² / a²(2bc)²
=(2bc+b²+c²−a²)(2bc−b²−c²+a2) / (2abc)²
={(b+c)²−a²}{a²−(b²+c²−2bc)} / (2abc)2
={(b+c)²−a²}{a²−(b−c)²} / (2abc)²
=(b+c+a)(b+c−a)(a+b−c)(a−b+c) / (2abc)² .........(1)
(sinB/b)²=sin²B/b²
=1−cos²B / b²={1−(a²+c²−b²/2ac)²} / b²
=(2ac)²−(a²+c²−b²)² / b²(2ac)²
=(2ac+a²+c²−b²)(2ac−a²−c²+b²) / (2abc)²
={(a+c)²−b²}{b²−(a²+c²−2ac)} / (2abc)²
={(a+c)²−b²}{b²−(a−c)²} / (2abc)²
=(a+c+b)(a+c−b)(b+a−c)(b−a+c) / (2abc)²
=(b+c+a)(b+c−a)(a+b−c)(a−b+c) / (2abc)²by re-arrangement.......(2)
by (1) and (2)
(sinA/a)²=(sinB/b)²
⟹sinA/a=sinB/b
the expression(b+c+a)(b+c−a)(a+b−c)(a−b+c) / (2abc)²
is cyclic in nature. When we replace a by b, b by c and c by a we get the same expression.
∴it can be proved in a similar way that
(sinC/c)²=(b+c+a)(b+c−a)(a+b−c)(a−b+c) / (2abc)²
∴sinA/a=sinB/b=sinC/c