Math, asked by Anand559, 17 days ago

Using elementary transformation, find the inverse of the matrix given​

Attachments:

Answers

Answered by BrainlyTwinklingstar
25

 \sf \: Given \:  A = \left[\begin{array}{ccc}  \sf1 & \sf 3 &  \sf - 2 \\ \sf - 3& \sf0 & \sf - 5 \\\sf2 & \sf5 & \sf0\end{array}\right]

we know that, A = IA

 \sf  \left[\begin{array}{ccc}  \sf1 & \sf 3 &  \sf - 2 \\ \sf - 3& \sf0 & \sf - 5 \\\sf2 & \sf5 & \sf0\end{array}\right] = \left[\begin{array}{ccc}  \sf1 & \sf 0 &  \sf 0 \\ \sf 0& \sf1 & \sf 0 \\\sf0 & \sf0 & \sf1\end{array}\right]A

Applying R₂ → R₂ + 3R₁

 \sf  \left[\begin{array}{ccc}  \sf1 & \sf 3 &  \sf - 2 \\ \sf 0& \sf9 & \sf  - 11 \\\sf2 & \sf5 & \sf0\end{array}\right] = \left[\begin{array}{ccc}  \sf1 & \sf 0 &  \sf 0 \\ \sf 3& \sf1 & \sf 0 \\\sf0 & \sf0 & \sf1\end{array}\right]A

Applying R₃ → R₃ + 2R₁

 \sf  \left[\begin{array}{ccc}  \sf1 & \sf 3 &  \sf - 2 \\ \sf 0& \sf9 & \sf  - 11 \\\sf0 & \sf - 1 & \sf4\end{array}\right] = \left[\begin{array}{ccc}  \sf1 & \sf 0 &  \sf 0 \\ \sf 3& \sf1 & \sf 0 \\\sf - 2 & \sf0 & \sf1\end{array}\right]A

Applying R₂ → 1/9R₂

 \sf  \left[\begin{array}{ccc}  \sf1 & \sf 3 &  \sf - 2 \\  \\ \sf 0& \sf1 & \sf  \dfrac{ - 11}{9}  \\  \\\sf0 & \sf - 1 & \sf4\end{array}\right] = \left[\begin{array}{ccc}  \sf1 & \sf 0 &  \sf 0  \\ \\ \sf  \dfrac{1}{3} & \sf \dfrac{1}{9}  & \sf 0 \\  \\\sf - 2 & \sf0 & \sf1\end{array}\right]A

Applying R₁ → R₁ - 3R₂

 \sf  \left[\begin{array}{ccc}  \sf1 & \sf 0 &  \sf  \dfrac{5}{3}  \\ \\  \sf 0& \sf1 & \sf  \dfrac{ - 11}{9}   \\ \\\sf0 & \sf - 1 & \sf4\end{array}\right] = \left[\begin{array}{ccc}  \sf0& \sf  \dfrac{ - 1}{3}  &  \sf 0  \\ \\ \sf  \dfrac{1}{3} & \sf \dfrac{1}{9}  & \sf 0  \\ \\\sf - 2 & \sf0 & \sf1\end{array}\right]A

Applying R₃ → R₃ + R₂

 \sf  \left[\begin{array}{ccc}  \sf1 & \sf 0 &  \sf  \dfrac{5}{3} \\   \\ \sf 0& \sf1 & \sf  \dfrac{ - 11}{9}  \\  \\\sf0 & \sf 0 & \sf \dfrac{25}{9} \end{array}\right] = \left[\begin{array}{ccc}  \sf0& \sf  \dfrac{ - 1}{3}  &  \sf 0 \\  \\ \sf  \dfrac{1}{3} & \sf \dfrac{1}{9}  & \sf 0  \\ \\\sf  \dfrac{ - 5}{3}  & \sf \dfrac{1}{9}  & \sf1\end{array}\right]A

Applying R₃ → 9/25R₃

 \sf  \left[\begin{array}{ccc}  \sf1 & \sf 0 &  \sf  \dfrac{5}{3} \\   \\ \sf 0& \sf1 & \sf  \dfrac{ - 11}{9}  \\  \\\sf0 & \sf 0 & \sf1 \end{array}\right] = \left[\begin{array}{ccc}  \sf0& \sf  \dfrac{ - 1}{3}  &  \sf 0 \\  \\ \sf  \dfrac{1}{3} & \sf \dfrac{1}{9}  & \sf 0 \\ \\ \sf  \dfrac{ - 3}{5}  & \sf \dfrac{1}{25}  & \sf \dfrac{9}{25} \end{array}\right]A

Applying R₁ → R₁ - 5/3R₃

 \sf  \left[\begin{array}{ccc}  \sf1 & \sf 0 &  \sf  0 \\   \\ \sf 0& \sf1 & \sf  \dfrac{ - 11}{9}  \\  \\\sf0 & \sf 0 & \sf1 \end{array}\right] = \left[\begin{array}{ccc}  \sf0& \sf  \dfrac{ - 2}{5}  &  \sf  \dfrac{ - 3}{5}  \\  \\ \sf  \dfrac{1}{3} & \sf \dfrac{1}{9}  & \sf 0 \\ \\ \sf  \dfrac{ - 3}{5}  & \sf \dfrac{1}{25}  & \sf \dfrac{9}{25} \end{array}\right]A

Applying R₂ → R₂ + 11/9R₃

 \sf  \left[\begin{array}{ccc}  \sf1 & \sf 0 &  \sf  0 \\ \sf 0& \sf1 & \sf 0 \\\sf0 & \sf 0 & \sf1 \end{array}\right] = \left[\begin{array}{ccc}  \sf1& \sf  \dfrac{ - 2}{5}  &  \sf  \dfrac{ - 3}{5}  \\  \\ \sf   - \dfrac{2}{5} & \sf \dfrac{4}{25}  & \sf  \dfrac{11}{25}  \\ \\ \sf  \dfrac{ - 3}{5}  & \sf \dfrac{1}{25}  & \sf \dfrac{9}{25} \end{array}\right]A

we know, I = A¯¹A

 \sf  Thus, A^{-1} =  \left[\begin{array}{ccc}  \sf1& \sf  \dfrac{ - 2}{5}  &  \sf  \dfrac{ - 3}{5}  \\  \\ \sf   - \dfrac{2}{5} & \sf \dfrac{4}{25}  & \sf  \dfrac{11}{25}  \\ \\ \sf  \dfrac{ - 3}{5}  & \sf \dfrac{1}{25}  & \sf \dfrac{9}{25} \end{array}\right]A

Similar questions