Math, asked by ruksarahmed, 1 year ago

using Euclid's algorithm find which of the following pairs of numbers are co-primes ;
1) 231,396
2) 847,2160

Answers

Answered by Anonymous
43

Answer :-

→ 1 not , 2 yes ✓ .

Step-by-step explanation :-

Firstly, we have to know what is co-prime numbers .

Those two numbers whose HCF is 1 , is known as co-prime numbers .

And , using Euclid's algorithm .

→ a = bq + r.

Now,

Q :- 1) 231 , 396 .

⇒ 396 = 231 × 1 + 165 .

⇒ 231 = 165 × 1 + 66 .

⇒ 165 = 66 × 2 + 33.

⇒ 66 = 33 × 2 + 0 .

∴ HCf ( 231 , 396 ) = 33 ≠ 1 .

Hence, this pair is not co-prime numbers .

Q :- 2) 847 , 2160 .

⇒ 2160 = 847 × 2 + 466 .

⇒ 847 = 466 × 1 + 381 .

⇒ 466 = 381 × 1 + 85 .

⇒ 381 = 85 × 4 + 41 .

⇒ 85 = 41 × 2 + 3 .

⇒ 41 = 3 × 13 + 2 .

⇒ 3 = 2 × 1 + 1 .

⇒ 2 = 1 × 2 + 0 .

∴ HCF( 847 , 2160 ) = 1 = 1 .

Hence, this pair is co-prime numbers .


brainlycom41: great
TPS: Nice answer!
Anonymous: Thanks to both of you
Answered by mantu66
29

Q. no :- 1) 231 , 396 .

⇒ 396 = 231 × 1 + 165 .

⇒ 231 = 165 × 1 + 66 .

⇒ 165 = 66 × 2 + 33.

⇒ 66 = 33 × 2 + 0 .

∴ HCf ( 231 , 396 ) = 33 .

this pair is not co-prime numbers .

Q. no :- 2) 847 , 2160 .

⇒ 2160 = 847 × 2 + 466 .

⇒ 847 = 466 × 1 + 381 .

⇒ 466 = 381 × 1 + 85 .

⇒ 381 = 85 × 4 + 41 .

⇒ 85 = 41 × 2 + 3 .

⇒ 41 = 3 × 13 + 2 .

⇒ 3 = 2 × 1 + 1 .

⇒ 2 = 1 × 2 + 0 .

∴ HCF( 847 , 2160 ) = 1

this pair is co-prime numbers .


brainlycom41: thank u
Similar questions