Using Euler’s modified method, find the solution of the equation : with initial condition y = 1 at x = 0 for the name of in steps of 0.1.
Answers
In mathematics and computational science, the Euler method (also called forward
Euler method) is a first-order numerical procedurefor solving ordinary differential
equations (ODEs) with a given initial value.
Consider a differential equation dy/dx = f(x, y) with initialcondition y(x0)=y0
then succesive approximation of this equation can be given by:
y(n+1) = y(n) + h * f(x(n), y(n))
where h = (x(n) – x(0)) / n
h indicates step size. Choosing smaller
values of h leads to more accurate results
and more computation time.
Consider below differential equation
dy/dx = (x + y + xy)
with initial condition y(0) = 1
and step size h = 0.025.
Find y(0.1).
Solution:
f(x, y) = (x + y + xy)
x0 = 0, y0 = 1, h = 0.025
Now we can calculate y1 using Euler formula
y1 = y0 + h * f(x0, y0)
y1 = 1 + 0.025 *(0 + 1 + 0 * 1)
y1 = 1.025
y(0.025) = 1.025.
Similarly we can calculate y(0.050), y(0.075), ....y(0.1).
y(0.1) = 1.11167