using factor theorem factorise 2x cube - 3 x square - 7 x + 30
Answers
we have to factorize 2x³ - 3x² - 17x + 30 using factor theorem.
prime factors of 30 = 1 × 2 × 3 × 5
let f(x) = 2x³ - 3x² - 17x + 30
f(1) = 2 - 3 - 17 + 30 ≠ 0
f(2) = 2(2)³ - 3(2)² - 17(2) + 30 = 46 - 46 = 0
so, (x - 2) is a factor of 2x³ - 3x² - 17x + 30.
now, x - 2)2x³ - 3x² - 17x + 30(2x² + x - 15
2x³ - 4x²
............................................
x² - 17x
x² - 2x
..................................
-15x + 30
-15x + 30
........................................
so, 2x³ - 3x² - 17x + 30 = (x - 2)(2x² + x - 15)
= (x - 2) [2x² + 6x - 5x - 15 ]
= (x - 2)[2x(x + 3) - 5(x + 3)]
= (x - 2)(2x - 5)(x + 3)
therefore, factorisation of 2x³ - 3x² - 17x + 30 is (x - 2)(2x - 5)(x + 3)