Using factor theorem factorise:-
x⁴+2x³-13x²-14x+24
Answers
(x-1) (x+2) (x-3) (x+4)
Step-by-step explanation:
Firstly, we will find the root of p(x) = x^4 + 2x³ - 13x² - 14x + 24
When x = 1
=> x^4 + 2x³ - 13x² - 14x + 24
=> (1)^4 + 2(1)³ - 13(1)² - 14(1) + 24
=> 1 + 2 - 13 - 14 + 24
=> 27 - 27
=> 0
So by factor theorem, (x - 1) is a factor
On dividing p(x) by (x - 1), we get x³ + 3x² - 10x -24
☆ Refer to the attachment 1 ☆
Now find the root of p(x) = x³ + 3x² - 10x -24
When x = -2
=> x³ + 3x² - 10x -24
=> (-2)³ + 3(-2)²- 10(-2) -24
=> -8 + 12 + 20 - 24
=> -32 + 32
=> 0
So by factor theorem, (x + 2) is a factor
On dividing p(x) by (x + 2), we get x² + x - 12
☆ Refer to the attachment 2 ☆
Now, Using middle term splitting :
=> x² + x - 12
=> x² + 4x - 3x - 12
=> x(x+4) - 3(x+4)
=> (x-3) (x+4)
∴ x^4 + 2x³ - 13x² - 14x + 24 = (x-1) (x+2) (x-3) (x+4)
Answer:
meet start kro!!!!!!!!!!!...pls.....
...online ho kya??..