Math, asked by TanveeDewangan2152, 9 months ago

Using factor theorem, factorize each of the following polynomial:
x³+6x²+11x+6

Answers

Answered by AditiHegde
2

Using factor theorem, the factors of x³+6x²+11x+6 are (x+1), (x+2) and (x+3)

Let,

f(x) = x^3 + 6x^2 + 11x + 6

now let us take, x = -1

f(-1) = (-1)^3 + 6(-1)^2 + 11(-1) + 6 = 0

∴ (x+1) is a factor of f(x)

In order to find remaining factors, we need to divide the given polynomial using the above obtained factor (x+1)

(x+1)   x^3 + 6x^2 + 11x + 6  (x^2+5x+6)

         x^3+x^2

         -------------

                 5x^2+11x+6

                 5x^2+5x

                 -------------

                          6x+6

                          6x+6

                       ----------

                                0

Another factor obtained is x^2+5x+6

Let us further obtain the factors of this quadratic equation

x^2+5x+6

= x^2+2x+3x+6

= x(x+2) + 3(x+2)

= (x+2) (x+3)

⇒ The factors of the polynomial x^3 + 6x^2 + 11x + 6  = (x+1) (x+2) (x+3)

Similar questions