Math, asked by Chitraksh3060, 11 months ago

Using factor theorem, factorize each of the following polynomial:
x³-2x²-x+2

Answers

Answered by ashishks1912
2

The factorised given polynomial is x^3-2x^2-x+2=(x-1)(x+1)(x-2)

Step-by-step explanation:

Given that the polynomial x^3-2x^2-x+2

To factorise the given polynomial  :

Let f(x) be the given polynomial

f(x)=x^3-2x^2-x+2

By using the Factor theorem here

Put x=1 in the polynomial f(x) we get

  • f(1)=1^3-2(1)^2-1+2
  • =1-2-1+2
  • =0
  • f(1)=0
  • Therefore x-1 is a factor and it satisfies the given polynomial.( by factor theorem )

                   x^2-x-2

              ____________________________

       x-1) x^3-2x^2-x+2

                 x^3-x^2

                  ___(-)__(+)__________________________

                         -x^2-x

                         -x^2+x

           _________(+)__(-)_______________

                               -2x+2

                               -2x+2

                     ____ (+)__(-)___________

           

                                          0  

                                ____________

Hence we have the quadratic equation x^2-x-2=0  

(x+1)(x-2)=0

x+1=0 or x-2=0

Put x=-1 in f(x)

  • f(-1)=(-1)^3-2(-1)^2-(-1)+2
  • =-1-2+1+2
  • =0
  • f(-1)=0
  • Therefore x+1 is a factor and it satisfies the given polynomial.( by factor theorem )

Put x=2 in f(x)

  • f(2)=2^3-2(2)^2-2+2
  • =8-8-2+2
  • =0
  • f(2)=0
  • Therefore x-2 is a factor and it satisfies the given polynomial.( by factor theorem )
  • Therefore the factors are x-1,x+1,x-2

The factorised given polynomial is x^3-2x^2-x+2=(x-1)(x+1)(x-2)

                                                                                           

Answered by jyothimallidi1
0

Answer:

kxkxg up xuffzfzfyxfffffxf

Similar questions