Math, asked by khushisharma28008, 5 days ago

using factor theorem x^3 +13x^2+ 32x +20​

Answers

Answered by Anonymous
37

  \bigstar\large \sf \underline \bold{ \underline{ \: SOLUTION}}\\  \\ \\</p><p></p><p>\bold\green{\underline{Let,}}  \\  \\  \\ </p><p></p><p> \sf\bold{p(x ) =  {x}^{3}  + 13 {x}^{2}  + 32x + 20} \\  \\ \\</p><p></p><p> \bf \underline{By \:  trial,  \: we \:  find} \\  \\ \\</p><p> \sf\bold{p( - 1) = ( { - 1})^{3}  + 13( - 1) {}^{2}  + 32( - 1) + 20} \\  \\  \sf: \implies\bold{ - 1 + 13 - 32 + 20 = 0} \\  \\ \\</p><p></p><p>\bold{\fbox{\color{Red}{By\:factor\:theorem,}}} \pink\bigstar\\  \\ \\</p><p></p><p> \sf\bold{x-(-1) , (x+1) is \:  a \:  factor  \: of  \: p(x).} \\  \\ \\</p><p> \sf\bold{{x}^{3}  + 13 {x}^{2}  + 32 + 20} \\  \\  \\ \sf: \implies\bold{{x}^{2} (x + 1) + 12(x)( x + 1) + 20(x + 1) } \\  \\ \\  \sf: \implies\bold{(x + 1)( {x}^{2}  + 12x + 20)} \\ \\ \\  \sf: \implies\bold{ (x + 1)( {x}^{2}  + 2x + 10x + 20) }  \\ \\ \\ \sf: \implies\bold{(x + 1){x(x + 2) + 10(x + 2)}} \\ \\ \\   \sf : \implies \bold {  (x + 1)(x + 2)(x + 10)}

Similar questions