Math, asked by aggritarathore, 2 months ago

Using graph find whether the pair of linear equation 3x-5y= 20,6x-10y+40=0 is consistent or inconsistent

Answers

Answered by LoverBoy346
0

Step-by-step explanation:

3x - 5y - 20 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (1)

6x - 10y + 40 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (2)

Here, a1 = 3, b1 = -5, c1 = -20

a2 = 6, b2 = -10, c2 = 40

 \frac{ \not3}{ \not6  \:  ^{2} } =  \frac{ \not -  \not5}{   \not-  \not10  \: ^{2} }   =  \frac{ \not -  \not20}{ \not40  ^{ - 2}  }

 \frac{1}{2}  =  \frac{1}{2} \neq \frac{1}{ - 2}

From above we can see that

 \frac{a1}{a2}  =  \frac{b1}{b2}  \neq \frac{c1}{c2}

Hence the lines are inconsistent/parallel

Similar questions