Math, asked by hasisarkar1973, 2 months ago

Using graph, tell whether the pair of linear equations 3x – 5y = 20, 6x – 10y + 40 = 0 is consistent or

inconsistent. Write its solution in case the pair is consistent.​

Answers

Answered by ravisundarkrishna
1

Answer:

Solution A

If we draw a perpendicular line from the apex angle, it divides the isosceles triangle into two congruent pieces. This can be explained by congruence.

____________________

[Proof]

Consider an isosceles triangle \triangle ABC△ABC with \overline{AB}=\overline{AC}

AB

=

AC

. We draw a perpendicular line \overline{AH}

AH

from the apex angle.

Criterion: SAS

\overline{AB}=\overline{AC}

AB

=

AC

\angle{B}=\angle{C}∠B=∠C

The triangles share \overline{AH}

AH

.

Hence the criterion is satisfied and the two pieces are congruent.

We know that drawing a perpendicular line divides the triangles into two congruent pieces. Since the two pieces are right triangles, we can apply the Pythagorean theorem to find the height.

____________________

[Pythagorean Theorem]

\implies \overline{AH}^2=5^2-\dfrac{5^2}{2^2} =\dfrac{3\cdot 5^2}{2^2}⟹

AH

2

=5

2

2

2

5

2

=

2

2

3⋅5

2

\implies \overline{AH}=\boxed{\dfrac{5\sqrt{3} }{2}\ \mathrm{cm}}⟹

AH

=

2

5

3

cm

____________________

[Area of \triangle ABC△ABC ]

Area of a triangle \triangle ABC△ABC with \overline{AB}=5\ \mathrm{cm}, \overline{BC}=5\ \mathrm{cm}, \overline{CA}=5\ \mathrm{cm}

AB

=5 cm,

BC

=5 cm,

CA

=5 cm .

\triangle ABC=\dfrac{1}{2} \times \overline{BC}\times \overline{AH}△ABC=

2

1

×

BC

×

AH

=\dfrac{1}{2} \times 5\times \dfrac{5\sqrt{3} }{2}=\boxed{\dfrac{25\sqrt{3} }{4}\ \mathrm{cm^2}}=

2

1

×5×

2

5

3

=

4

25

3

cm

2

____________________

[Pythagorean Theorem]

\implies \overline{PH}^2=4^2-\dfrac{5^2}{2^2} =\dfrac{64-25}{2^2}=\boxed{\dfrac{39}{2^2} }⟹

PH

2

=4

2

2

2

5

2

=

2

2

64−25

=

2

2

39

\implies \overline{PH}=\boxed{\dfrac{\sqrt{39} }{2}\ \mathrm{cm}}⟹

PH

=

2

39

cm

____________________

[Area of \triangle PQR△PQR ]

Area of a triangle \triangle PQR△PQR with \overline{PQ}=4\ \mathrm{cm}, \overline{QR}=5\ \mathrm{cm}, \overline{RP}=4\ \mathrm{cm}

PQ

=4 cm,

QR

=5 cm,

RP

=4 cm .

\triangle PQR=\dfrac{1}{2} \times \overline{QR}\times \overline{PH}△PQR=

2

1

×

QR

×

PH

=\dfrac{1}{2} \times 5\times \dfrac{\sqrt{39} }{2} =\boxed{\dfrac{5\sqrt{39} }{4}\ \mathrm{cm^2}}=

2

1

×5×

2

39

=

4

5

39

cm

2

____________________

Similar questions