Using Heron's Formula, find the area of an isosceles
triangle, the measure of one of its equal sides being
a units and the third side 2b
units.
Answers
Answer:
see photo
Step-by-step explanation:
mark me brainleast
ANSWER
Area of the isosceles triangle=
Area of the isosceles triangle= s(s−a)(s−b)(s−c)
Area of the isosceles triangle= s(s−a)(s−b)(s−c)
Area of the isosceles triangle= s(s−a)(s−b)(s−c)
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s=
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c =
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b =a+b
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b =a+b arΔ=
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b =a+b arΔ= (a+b)(a+b−a)(a+b−a)(a+b−2b)
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b =a+b arΔ= (a+b)(a+b−a)(a+b−a)(a+b−2b)
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b =a+b arΔ= (a+b)(a+b−a)(a+b−a)(a+b−2b) =
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b =a+b arΔ= (a+b)(a+b−a)(a+b−a)(a+b−2b) = b
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b =a+b arΔ= (a+b)(a+b−a)(a+b−a)(a+b−2b) = b 2
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b =a+b arΔ= (a+b)(a+b−a)(a+b−a)(a+b−2b) = b 2 (a+b)(a−b)
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b =a+b arΔ= (a+b)(a+b−a)(a+b−a)(a+b−2b) = b 2 (a+b)(a−b)
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b =a+b arΔ= (a+b)(a+b−a)(a+b−a)(a+b−2b) = b 2 (a+b)(a−b)
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b =a+b arΔ= (a+b)(a+b−a)(a+b−a)(a+b−2b) = b 2 (a+b)(a−b) =b
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b =a+b arΔ= (a+b)(a+b−a)(a+b−a)(a+b−2b) = b 2 (a+b)(a−b) =b a
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b =a+b arΔ= (a+b)(a+b−a)(a+b−a)(a+b−2b) = b 2 (a+b)(a−b) =b a 2
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b =a+b arΔ= (a+b)(a+b−a)(a+b−a)(a+b−2b) = b 2 (a+b)(a−b) =b a 2 −b
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b =a+b arΔ= (a+b)(a+b−a)(a+b−a)(a+b−2b) = b 2 (a+b)(a−b) =b a 2 −b 2
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b =a+b arΔ= (a+b)(a+b−a)(a+b−a)(a+b−2b) = b 2 (a+b)(a−b) =b a 2 −b 2
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b =a+b arΔ= (a+b)(a+b−a)(a+b−a)(a+b−2b) = b 2 (a+b)(a−b) =b a 2 −b 2
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b =a+b arΔ= (a+b)(a+b−a)(a+b−a)(a+b−2b) = b 2 (a+b)(a−b) =b a 2 −b 2 sq.units
Area of the isosceles triangle= s(s−a)(s−b)(s−c) s= 2a+b+c = 2a+a+2b =a+b arΔ= (a+b)(a+b−a)(a+b−a)(a+b−2b) = b 2 (a+b)(a−b) =b a 2 −b 2 sq.unitsAnswered By
k srija