Math, asked by kavikrish57, 6 months ago

Using heron's formula, find the area of triangle whose sides are 10cm,24cm,26cm

Answers

Answered by sandhya2006mishra
0

120 cm ^2 is the correct answer

Answered by Seafairy
69

{\large{\text{\underline{\underline{\red{Given :}}}}}}

\text{Sides of triangle : 10cm, 24cm, 26cm}

{\large{\text{\underline{\underline{\red{To Find :}}}}}}

\text{Area of triangle}

{\large{\text{\underline{\underline{\red{Formula Applied :}}}}}}

\text{Heron's formula}

{\large{\text{\underline{\underline{\red{Solution :}}}}}}

Let a =10 cm, b = 24cm, c = 26cm

{\text{heron's formula} = \sqrt{s(s-a)(s-b)(s-c)}}

s = \frac{a+b+c}{2}

s=\frac{10+24+26}{2} \implies \frac{60cm}{2} \implies 30cm

\sf s-a\implies 30-10\implies 20 cm

\sf s-b\implies 30-24\implies 6cm

\sf s-c\implies 30-26\implies4cm

Area of triangle  =\sqrt{s(s-a)(s-b)(s-c) }

\implies \sqrt{30\times 20\times 6\times 4}

\implies \sqrt{2\times3\times5\times2^2\times5\times2\times3\times2^2}

\implies \sqrt{2^6\times3^2 \times5^2}

\implies 2^3\times3\times5

\implies 8\times3\times 5

\implies 120cm^2

\text{Area of triangle is 120$cm^2$}

________________________________________

{\large{\text{\underline{\underline{\red{Heron's formula :}}}}}}

Heron a mathematician gave a formula for finding the area of a triangle, if the height is not known, but the length of the three sides are known. If        a, b, c denotes the sides of BC,AC and AB respectively of a triangle ABC, then

\text{Area of triangle}=\sqrt{s(s-a)(s-b)(s-c)}

where s = \frac{a+b+c}{2}

( NOTE : When a=b=c, then Heron's formula will be \frac{\sqrt{3}}{4}a^2sq.units which is area of an equailateral triangle. )


Anonymous: Nice !!
Seafairy: thank you :)♡
Anonymous: :)
Anonymous: wello
Seafairy: (:
Similar questions