Math, asked by Anonymous, 10 months ago

USING IDENTITIES, EVALUTE​

Attachments:

Answers

Answered by hukam0685
3

Step-by-step explanation:

we have to use algebraic identities to solve these questions

( {x  + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}  \\  \\ ( {x   -  y)}^{2}  =  {x}^{2}   -  2xy +  {y}^{2} \\  \\  {x}^{2}  -  {y}^{2}  = (x - y)(x + y) \\  \\

1) \: {(71)}^{2}  = ( {70 + 1)}^{2}  \\  \\  =  {(70)}^{2}  + 2(70)(1) +  {1}^{2}  \\  \\  = 4900 + 140 + 1 \\  \\   {(71)}^{2} = 5041 \\  \\

2)( {99)}^{2}  =  {(100 - 1)}^{2}  \\  \\  = ( {100)}^{2}  - 2(100)(1) + ( {1)}^{2}  \\  \\  = 10000 - 200 + 1 \\  \\  {( 99) }^{2} = 9801 \\  \\

3)( {102)}^{2}  =  {(100 + 2)}^{2}  \\  \\  = ( {100)}^{2}  + 2(100)(2) + ( {2)}^{2}  \\  \\  = 10000 + 400 + 4 \\  \\  ( {102)}^{2} = 10404 \\

4) {(998)}^{2}  = ( {1000 - 2)}^{2}  \\  \\  = ( {1000)}^{2}  - 2(1000)(2) + ( {2)}^{2}  \\  \\  = 1000000 - 4000 + 4 \\  \\  ( {998)}^{2} = 996004 \\  \\

5)( {5.2)}^{2}  = ( {5 + 0.2)}^{2}  \\  \\  = ( {5)}^{2}  + 2(5)(0.2) + ( {0.2)}^{2 }  \\  \\  = 25 + 2 + 0.04 \\  \\  ( {5.2)}^{2} = 27.04 \\  \\

6)297 \times 303 \\  \\  = (300 - 3)(300 + 3) \\  \\  = ( {300)}^{2}  - ( {3)}^{2}  \\  \\  = 90000 - 9 \\  \\ 297 \times 303=  89991 \\  \\

7)78 \times 82 = (80 - 2)(80 + 2) \\  \\  = ( {80)}^{2}  - ( {2)}^{2}  \\  \\  = 6400 - 4 \\  \\ 78 \times 82 = 6396 \\  \\

8)( {8.9)}^{2}  = ( {9 - 0.1)}^{2}  \\  \\ =  ( {9)}^{2}  - 2(0.1)(9) + ( {0.1)}^{2}  \\  \\  = 81 - 1.8 + 0.01 \\  \\ ( {8.9)}^{2} = 79.21 \\  \\

9)10.5 \times 9.5 \\  \\  = (10 +0 .5)(10 - 0.5) \\  \\  = ( {10)}^{2}  - ( {0.5)}^{2}  \\  \\  = 100 - 0.25 \\  \\  = 99.75 \\  \\

Hope it helps you.

Similar questions