using identity find this answer
Answers
Answer:
(i) (x + 3) (x + 3) = (x + 3)2
= x2 + 6x + 9
Using (a+b) 2 = a2 + b2 + 2ab
(ii) (2y + 5) (2y + 5) = (2y + 5)2
= 4y2 + 20y + 25
Using (a+b) 2 = a2 + b2 + 2ab
iii) (2a – 7) (2a – 7) = (2a – 7)2
= 4a2 – 28a + 49
Using (a-b) 2 = a2 + b2 – 2ab
iv) (3a – 1/2)(3a – 1/2) = (3a – 1/2)2
= 9a2 -3a+(1/4)
Using (a-b) 2 = a2 + b2 – 2ab
v) (1.1m – 0.4) (1.1m + 0.4)
= 1.21m2 + 0.44 – 0.44m – 0.16
= 1.21m2 – 0.16
Using (a – b)(a + b) = a2 – b2
vi) (a2+ b2) (– a2+ b2)
= (b2 + a2 ) (b2 – a2)
= -a4 + b4
Using (a – b)(a + b) = a2 – b2
vii) (6x – 7) (6x + 7)
=36x2 – 49
Using (a – b)(a + b) = a2 – b2
viii) (– a + c) (– a + c) = (– a + c)2
= c2 + a2 – 2ac
Using (a-b) 2 = a2 + b2 – 2ab
= (x2/4) + (9y2/16) + (3xy/4)
Using (a+b) 2 = a2 + b2 + 2ab
x) (7a – 9b) (7a – 9b) = (7a – 9b)2
= 49a2 – 126ab + 81b2
Using (a-b) 2 = a2 + b2 – 2ab
Step-by-step explanation:
hope this will help u