Physics, asked by jigalkothari123456, 10 months ago

using integration find the area enclosed by the curve y= x-x^2 and positive x-axis from x=0 ​

Answers

Answered by Rohit18Bhadauria
41

Given:

A curve y= x-x²

To Find:

Area enclose by given curve and x-axis from x=0

Solution:

First of all, we have to find the intersection of given curve and x-axis

We know that, at x-axis, y=0

So, on putting y=0 in the equation of curve, we will get the the two points where curve meet the x-axis

\longrightarrow\rm{0= x-x^{2}}

\longrightarrow\rm{x-x^{2}=0}

\longrightarrow\rm{x^{2}-x=0}

\longrightarrow\rm{x(x-1)=0}

\longrightarrow\rm{x=0,1}

So, given curve intersect x-axis at x=0 and x=1

Therefore, we have find the area enclosed by the curve y= x-x² and positive x-axis from x=0 to x=1

\rule{190}{1}

Now, on applying integration, we get

\longrightarrow\rm{\displaystyle\int\limits^1_0 {y}\,dx}

\longrightarrow\rm{\displaystyle\int\limits^1_0 {(x-x^{2})}\,dx}

\longrightarrow\rm{\Bigg[\dfrac{x^{2}}{2}-\dfrac{x^{3}}{3}\Bigg]^1_0}

\longrightarrow\rm{\Bigg(\dfrac{(1)^{2}}{2}-\dfrac{(1)^{3}}{3}\Bigg)-\Bigg(\dfrac{(0)^{2}}{2}-\dfrac{(0)^{3}}{3}\Bigg)}

\longrightarrow\rm{\Bigg(\dfrac{1}{2}-\dfrac{1}{3}\Bigg)-\Bigg(\dfrac{0}{2}-\dfrac{0}{3}\Bigg)}

\longrightarrow\rm{\Bigg(\dfrac{3-2}{6}\Bigg)-0}

\longrightarrow\rm{\dfrac{1}{6}\:sq\:units}

Hence, the required area is 1/6 sq. units

Attachments:
Answered by amitkumar44481
26

AnsWer :

1/6 sq units.

To Find :

Area of enclosed by the curve y = x - x².

Solution :

We have,

  • Enclosed curve y = x - x².
  • With positive x - axis from x = 0.

A/Q,

  • When, given curve pass through x - axis, it means should be y = 0.

 \tt : \implies y = x -  {x}^{2} .

 \tt : \implies 0 = x -  {x}^{2} .

 \tt : \implies 0= x(1 -  x) .

 \tt : \implies  x  = 0 \:  \:  \red{or} \:  \: x = 1.

Now, We have Value of x.

Let use Integration to find Enclosed area ( W.r.t.x )

 \tt : \implies  \int\limits_{0}^{1}y \: dx .\\

 \tt : \implies  \int\limits_{0}^{1}(x -  {x}^{2} ) \: dx .\\

 \tt : \implies  \int\limits_{0}^{1}x \: dx -   \int\limits_{0}^{1} {x}^{2} \: dx .\\

 \tt : \implies \Bigg(  \dfrac{ {x}^{2} }{2} \Bigg) _{0}^{1} -  \Bigg(\dfrac{ {x}^{3} }{3} \Bigg)_{0}^{1}  .\\

 \tt : \implies   \Bigg(\dfrac{ {(1)}^{2} }{2}  -  \dfrac{ {(0)}^{2} }{2} \Bigg) - \Bigg( \dfrac{ {(1)}^{3} }{3 }  -  \dfrac{ {(0)}^{3} }{3} \Bigg) \\

 \tt : \implies \Bigg[ \dfrac{1}{2}  -  \dfrac{1}{3} \Bigg]

 \tt : \implies \Bigg[ \dfrac{3 - 2}{6} \Bigg]

 \tt : \implies  \dfrac{1}{6} \: sq \: units.

Therefore, the required enclosed area is 1/6 sq units.

Attachments:
Similar questions