Math, asked by praneet1528, 10 months ago

Using mathematical induction, prove that  \frac{1^{3}}{1} + \frac{1^{3} + 2^{3}}{1 + 3} + \frac{1^{3} + 2^{3} + 3^{3}}{1 + 3 + 5} + ... upto n terms =  \frac{n}{24} [2n^{2} + 9n + 13] for all n ∈ N

Answers

Answered by QGP
39

Mathematical Induction


We are given statement to prove by the Principle of Mathematical Induction.

The n^{th} term isn't given. We must figure it out.


Each term has sum of cubes in numerator and sum of odd numbers in the denominator.

Observing the pattern, the n^{th} term must contain sum of cubes of n terms in the numerator and sum of first n odd numbers in the denominator.


While proving, we would be using two results:


\boxed{\begin{minipage}{65 mm}$\sf \displaystyle \bullet\quad 1^3+2^3+3^3+\dots+n^3 = \left(\frac{n(n+1)}{2}\right)^2 \\\\\\ \bullet \quad 1+3+5+\dots+(2n-1)=n^2$\end{minipage}}


The second result above is a simple A.P. with first time 1, common difference 2, and total n terms. So sum can be found easily and it is obtained as \sf n^2.


Let us name the statement as P(n). So, we have to prove:


\sf\displaystyle P(n): \frac{1^3}{1}+\frac{1^3+2^3}{1+3}+\frac{1^3+2^3+3^3}{1+3+5}+\dots+\frac{1^3+2^3+3^3+\dots n^3}{1+3+5+\dots+(2n-1)} = \frac{n}{24}\left[2n^2+9n+13\right]


Checking for P(1):


\begin{array}{l|lc} \mathbb{LHS} & &\mathbb{RHS} \\ \cline{1-3} & \\ \sf = \dfrac{1^3}{1} & \sf = & \sf\dfrac{1}{24} \left[ 2(1)^2+9(1)+13\right] \\ \\ = \sf 1 & \sf = & \sf \dfrac{1}{24}\times 24\\ \\ \sf = 1 & = & \sf 1\end{array}


Hence, P(1) is true.


Suppose P(k) is true. Then:


\sf\displaystyle P(k): \frac{1^3}{1}+\frac{1^3+2^3}{1+3}+\frac{1^3+2^3+3^3}{1+3+5}+\dots+\frac{1^3+2^3+3^3+\dots k^3}{1+3+5+\dots+(2k-1)} = \frac{k}{24}\left[2k^2+9k+13\right] \quad \textsf{---(1)}


We now need to prove for P(k+1).

To Prove:


\sf\displaystyle P(k+1): \frac{1^3}{1}+\frac{1^3+2^3}{1+3}+\frac{1^3+2^3+3^3}{1+3+5}+\dots+\frac{1^3+2^3+3^3+\dots (k+1)^3}{1+3+5+\dots+(2(k+1)-1)} = \frac{n}{24}\left[2(k+1)^2+9(k+1)+13\right]


Consider the LHS:


\mathbb{LHS}\\\\\\\sf\displaystyle = \underbrace{\sf\frac{1^3}{1}+\frac{1^3+2^3}{1+3}+\frac{1^3+2^3+3^3}{1+3+5}+\dots+\frac{1^3+2^3+\dots k^3}{1+3+\dots+(2k-1)}}_{ \textsf{Use (1)}}+\overbrace{\underbrace{\sf\frac{1^3+2^3+\dots+(k+1)^3}{1+3+\dots+(2(k+1)-1)}}_{\sf\textsf{Sum = }(k+1)^2}}^{\sf \textsf{Sum = }\left(\dfrac{(k+1)(k+2)}{2}\right)^2}\\\\\\=\frac{k}{24}\left[2k^2+9k+13\right] + \frac{(k+2)^2\cancel{(k+1)^2}}{4\cancel{(k+1)^2}}\\\\\\=\frac{k}{24}\left[2k^2+9k+13\right] +\frac{(k+2)^2}{4}


\sf\displaystyle = \frac{k}{24}\left[2k^2+9k+13\right] +\frac{(k+2)^2}{4}\\\\\\=\frac{1}{4}\left(\frac{2k^3+9k^2+13k}{6}+k^2+4k+4\right)\\\\\\ = \frac{1}{4}\left(\frac{2k^3+9k^2+13k+6k^2+24k+24}{6}\right)\\\\\\=\frac{1}{24}(2k^3+15k^2+37k+24)\\\\\\\textsf{We notice that (k+1) is a factor}\\\\\\=\frac{1}{24}(2k^3+2k^2+13k^2+13k+24k+24)\\\\\\=\frac{1}{24}(2k^2(k+1)+13k(k+1)+24(k+1))\\\\\\=\frac{(k+1)}{24}\left[2k^2+13k+24\right] \\\\\\ =\frac{(k+1)}{24} \left[ 2k^2+4k+2k + 9k + 9 + 13\right]


\sf\displaystyle =\frac{(k+1)}{24}\left[2(k^2+2k+1)+9(k+1)+13 \right]\\\\\\ = \frac{(k+1)}{24} \Big[ 2(k+1)^2+9(k+1)+13\Big] \\\\\\ = \mathbb{RHS}


Thus, P(k+1) is true provided P(k) is true.


Now, P(1) is true and P(k) is true \implies P(k+1) is true.


So, P(n) is true for all \sf n \in \mathbb{N}


\mathcal{HENCE\ \ PROVED}\textsf{, by Principle of Mathematical Induction}


QGP: Thank You :)
QGP: @Sonalibendre I will DM you regarding it.
ana205: the LaTeX master XD
ana205: congragulations for the award !
ana205: and a happy new year sis
ana205: I mean bro
Answered by anuradha9554
2

Answer:

We are given statement to prove by the Principle of Mathematical Induction.

The n^{th}n

th

term isn't given. We must figure it out.

Each term has sum of cubes in numerator and sum of odd numbers in the denominator.

Observing the pattern, the n^{th}n

th

term must contain sum of cubes of n terms in the numerator and sum of first n odd numbers in the denominator.

While proving, we would be be using two results:

The second result above is a simple A.P. with first time 1, common difference2, and total n terms. So sum can be found easily and it is obtained as \sf n^2n

2

.

Let us name the statement as P(n). So, we have to prove:

1

1

3

+

1+3

1

3

+2

3

+

1+3+5

1

3

+2

3

+3

3

+⋯+

1+3+5+⋯+(2n−1)

1

3

+2

3

+3

3

+…n

3

=

24

n

[2n

2

+9n+13]

Checking for P(1):

LHS

\cline1−3

=

1

1

3

=1

=1

=

=

=

RHS

24

1

[2(1)

2

+9(1)+13]

24

1

×24

1

Hence, P(1) is true.

Suppose P(k) is true. Then:

:

1

1

3

+

1+3

1

3

+2

3

+

1+3+5

1

3

+2

3

+3

3

+⋯+

1+3+5+⋯+(2k−1)

1

3

+2

3

+3

3

+…k

3

=

24

k

[2k

2

+9k+13]—(1)

We now need to prove for P(k+1).

To Prove:

\sf\displaystyle P(k+1): \frac{1^3}{1}+\frac{1^3+2^3}{1+3}+\frac{1^3+2^3+3^3}{1+3+5}+\dots+\frac{1^3+2^3+3^3+\dots (k+1)^3}{1+3+5+\dots+(2(k+1)-1)} = \frac{n}{24}\left[2(k+1)^2+9(k+1)+13\right]P(k+1):

1

1

3

+

1+3

1

3

+2

3

+

1+3+5

1

3

+2

3

+3

3

+⋯+

1+3+5+⋯+(2(k+1)−1)

1

3

+2

3

+3

3

+…(k+1)

3

=

24

n

[2(k+1)

2

+9(k+1)+13]

Consider the LHS:

LHS

=

Use (1)

1

1

3

+

1+3

1

3

+2

3

+

1+3+5

1

3

+2

3

+3

3

+⋯+

1+3+⋯+(2k−1)

1

3

+2

3

+…k

3

+

Sum = (k+1)

2

1+3+⋯+(2(k+1)−1)

1

3

+2

3

+⋯+(k+1)

3

Sum = (

2

(k+1)(k+2)

)

2

=

24

k

[2k

2

+9k+13]+

4

(k+1)

2

(k+2)

2

(k+1)

2

=

24

k

[2k

2

+9k+13]+

4

(k+2)

2

=

24

k

[2k

2

+9k+13]+

4

(k+2)

2

=

4

1

(

6

2k

3

+9k

2

+13k

+k

2

+4k+4)

=

4

1

(

6

2k

3

+9k

2

+13k+6k

2

+24k+24

)

=

24

1

(2k

3

+15k

2

+37k+24)

We notice that (k+1) is a factor

=

24

1

(2k

3

+2k

2

+13k

2

+13k+24k+24)

=

24

1

(2k

2

(k+1)+13k(k+1)+24(k+1))

=

24

(k+1)

[2k

2

+13k+24]

=

24

(k+1)

[2k

2

+4k+2k+9k+9+13]

=

24

(k+1)

[2(k

2

+2k+1)+9(k+1)+13]

=

24

(k+1)

[2(k+1)

2

+9(k+1)+13]

=RHS

Thus, P(k+1) is true provided P(k) is true.

Now, P(1) is true and P(k) is true \implies⟹ P(k+1) is true.

Now, P(1) is true and P(k) is true \implies⟹ P(k+1) is true.

So, P(n) is true for all \sf n \in \mathbb{N}n∈N

HENCE PROVED, by Principle of Mathematical Induction

hope it helps you g ❤️❣️

Similar questions