Physics, asked by rmiprachi, 2 months ago

Using Maxwell's equation in vacuum, derive the wave equation for the y component of the electric field vector​

Answers

Answered by sohanaenterprise2015
0

Explanation:

\overrightarrow{\nabla}\times\overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t }

×

E

=−

∂t

B

\overrightarrow{\nabla}\times\overrightarrow{B}=\mu_0\epsilon_0\frac{\partial \overrightarrow{E}}{\partial t }

×

B

0

ϵ

0

∂t

E

\overrightarrow{\nabla}\times\overrightarrow{E}(z,t)\overrightarrow{i}=\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k}\\ \frac{\partial }{\partial x } & \frac{\partial }{\partial y } & \frac{\partial }{\partial z } \\ \overrightarrow{E}(z,t) &0 & 0 \end{vmatrix}=\frac{\partial E}{\partial z }\overrightarrow{j}

×

E

(z,t)

i

=

i

∂x

E

(z,t)

j

∂y

0

k

∂z

0

=

∂z

∂E

j

\frac{\partial E}{\partial z }=-\frac{\partial B}{\partial t }

∂z

∂E

=−

∂t

∂B

\overrightarrow{\nabla}\times\overrightarrow{B}(z,t)\overrightarrow{j}=\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k}\\ \frac{\partial }{\partial x } & \frac{\partial }{\partial y } & \frac{\partial }{\partial z } \\ 0 & \overrightarrow{B}(z,t) & 0 \end{vmatrix}=-\frac{\partial B}{\partial z }\overrightarrow{i}

×

B

(z,t)

j

=

i

∂x

0

j

∂y

B

(z,t)

k

∂z

0

=−

∂z

∂B

i

\frac{\partial B}{\partial z }=-\mu_0\epsilon_0\frac{\partial E}{\partial t }

∂z

∂B

=−μ

0

ϵ

0

∂t

∂E

\frac{\partial^2 E}{\partial z^2 }=-\frac{\partial}{\partial z }\frac{\partial B}{\partial t }=-\frac{\partial}{\partial t }\frac{\partial B}{\partial z }=-\frac{\partial}{\partial t }(-\mu_0\epsilon_0\frac{\partial E}{\partial t })=\mu_0\epsilon_0\frac{\partial^2 E}{\partial t^2 }

∂z

2

2

E

=−

∂z

∂t

∂B

=−

∂t

∂z

∂B

=−

∂t

(−μ

0

ϵ

0

∂t

∂E

)=μ

0

ϵ

0

∂t

2

2

E

\frac{\partial^2 E}{\partial z^2 }=\mu_0\epsilon_0\frac{\partial^2 E}{\partial t^2 }

∂z

2

2

E

=μ 0

ϵ

0 ∂t

2 ∂ 2 E Answer

Similar questions