using Newtown raphson method find root of the equation x^2-2xe^-x+e^-2x=0
Answers
Answered by
0
Answer:
f(x) =x2-2xe-x+e-2x=0 FindRoot[x*x-2*x*Exp[-x]+Exp[-2*x],{x,1}] {x0.567143} Newton method : f(x) =x2-2xe-x+e-2x=0 f '(x) = 2x -2e-x
Similar questions