Math, asked by sukhbeerdhot, 1 year ago

using properties of determinants prove that...
1 1 1+3x
1+3y 1 1
1 1+3z 1

= 9(3xyz+xy+yz+zx)

Attachments:

Ravinderjit: hello

Answers

Answered by Kanagasabapathy
10
hii.... here is ur proof
Attachments:
Answered by athleticregina
17

Answer:

Proved below.

Step-by-step explanation:

Given : \left|\begin{array}{ccc}1&1&1+3x\:\\ 1+3y&1&1\\ 1&1+3z&1\end{array}\right|

We have to prove \left|\begin{array}{ccc}1&1&1+3x\:\\ 1+3y&1&1\\ 1&1+3z&1\end{array}\right|=9(3xyz+xy+yz+zx)

Consider the given matrix,

\left|\begin{array}{ccc}1&1&1+3x\:\\ 1+3y&1&1\\ 1&1+3z&1\end{array}\right|

apply column addition,

R_2\rightarrow R_2-R_1

\left|\begin{array}{ccc}1&1&1+3x\:\\3y&0&-3x\\1&1+3z&1\end{array}\right|

now apply , R_3\rightarrow R_3-R_1

\left|\begin{array}{ccc}1&1&1+3x\:\\3y&0&-3x\\0&3z&-3x\end{array}\right|

Expand along R_1, we have,

D=1(0+9xz)-1(-9xy-0)+1((1+3x)(9yz-0))

Simplify, we get,

D=9(3xyz+xy+yz+zx)

Hence, proved.

Similar questions