Math, asked by kavithaganesh4085, 1 year ago

Using properties of proportion find x:y if x^3+12x/6x2+8=y^3+27y/9y2+27

Answers

Answered by dheerajk1912
17

Step-by-step explanation:

  • Given that

        \mathbf{\frac{x^{3}+12x}{6x^{2}+8}=\frac{y^{3}+27y}{9y^{2}+27}}

        Using componendo and dividendo rules in above equation

        \mathbf{\frac{x^{3}+12x+6x^{2}+8}{x^{3}+12x-6x^{2}-8}=\frac{y^{3}+27y+9y^{2}+27}{y^{3}+27y-9y^{2}-27}}

        \mathbf{\frac{x^{3}+6x^{2}+12x+8}{x^{3}-6x^{2}+12x-8}=\frac{y^{3}+9y^{2}+27y+27}{y^{3}-9y^{2}+27y-27}}       ...1)

  • From identity

        \mathbf{(A+B)^{3}=A^{3}+3A^{2}B+3AB^{2}+B^{3}}

        and

        \mathbf{(A-B)^{3}=A^{3}-3A^{2}B+3AB^{2}-B^{3}}

  • Using identity in equation 1), we get

        \mathbf{\frac{(x+2)^{3}}{(x-2)^{3}}=\frac{(y+3)^{3}}{(y-3)^{3}}}        ...2)

  • On taking cube root on both side of equation 2), we get

        \mathbf{\frac{(x+2)}{(x-2)}=\frac{(y+3)}{(y-3)}}

        On doing cross- multiplication

       \mathbf{(x+2)(y-3)=(x-2)(y+3)}

       \mathbf{xy+2y-3x-6=xy-2y+3x-6}

       \mathbf{2y-3x=-2y+3x}

       \mathbf{2y+2y=3x+3x}

       \mathbf{4y=6x}

       So

       \mathbf{\frac{x}{y}=\frac{4}{6}=\frac{2}{3}=} This is answer.

       

Similar questions