Using properties of proportion, solve for x:
Answers
If
1. ( By Invertendo )
2. ( By Alternendo )
3. ( By Compendo )
4. ( By dividendo )
5. ( By Compendo and dividendo )
6. ( By Convertendo )
7. If , then each ratio :
=
=
:
Applying Compendo and dividendo,
=
Squaring on both sides,
Again Applying Compendo and dividendo,
⇒ 16x² - 4x = 16x² + 5 - 8x
⇒ 4x = 5
⇒ x =
Answer:
Properties of proportion:-
If \frac{a}{b} = \frac{c}{d} \implies
b
a
=
d
c
⟹
1. \frac{b}{a} = \frac{d}{c}
a
b
=
c
d
( By Invertendo )
2. \frac{a}{c} = \frac{b}{d}
c
a
=
d
b
( By Alternendo )
3. \frac{a + b}{b} = \frac{c + d}{d}
b
a+b
=
d
c+d
( By Compendo )
4. \frac{a - b}{b} = \frac{c - d}{d}
b
a−b
=
d
c−d
( By dividendo )
5. \frac{a + b}{a - b} = \frac{c + d}{c - d}
a−b
a+b
=
c−d
c+d
( By Compendo and dividendo )
6. \frac{a}{a - b} = \frac{c}{c - d}
a−b
a
=
c−d
c
( By Convertendo )
7. If \frac{a}{b} = \frac{c}{d} = \frac {e}{f}
b
a
=
d
c
=
f
e
, then each ratio :
= \frac{a + c + e}{b + d + f}
b+d+f
a+c+e
= \frac{Sum \:of \:antecedents}{Sum\: of \:consequents}
Sumofconsequents
Sumofantecedents
Solution:-
To Find : :\frac{ \sqrt{x + 1} \: + \: \sqrt{x - 1} }{ \sqrt{x + 1} \: - \: \sqrt{x - 1} = \frac{4x - 1}{2}
Applying Compendo and dividendo,
\frac{ \sqrt{x + 1} \: + \: \sqrt{x - 1} \: + \: \sqrt{x + 1} \: - \: \sqrt{x - 1 }{ \sqrt{x + 1} \: +\: \sqrt{x + 1} \: - \: \sqrt{x + 1} \: + \: \sqrt{x - 1} = \frac{4x - 1 + 2}{4x - 1 - 2}
\frac {2 \sqrt{x + 1}}{2 \sqrt{x - 1}} = \frac{4x + 1}{4x - 3}
2
x−1
2
x+1
=
4x−3
4x+1
Squaring on both sides,
\frac {x + 1}{x - 1} = \frac {16x^{2} + 1 + 8x}{16x^{2} + 9 - 24x}
x−1
x+1
=
16x
2
+9−24x
16x
2
+1+8x
Again Applying Compendo and dividendo,
\frac{x + 1 + x - 1}{x + 1 - x + 1} = \frac {16x^{2} + 1 + 8x + 16x^{2} + 9 - 24x}{16x^{2} + 1 + 8x -16x^{2} - 9 + 24x}
x+1−x+1
x+1+x−1
=
16x
2
+1+8x−16x
2
−9+24x
16x
2
+1+8x+16x
2
+9−24x
\frac {2x}{2} = \frac {32^{2} + 10 - 16x}{32x - 8}
2
2x
=
32x−8
32
2
+10−16x
⇒ 16x² - 4x = 16x² + 5 - 8x
⇒ 4x = 5
⇒ x = \frac {5}{4}
4
5