Physics, asked by bhadrimahi, 9 months ago

Using second law of motion , derive the relation between force and acceleration .
A bullet of 10 g strikes a sand-bag at a speed of 103 m/s and gets embedded after travelling 5 cm . calculate :
(i) the resistive force exerted by sand on the Bullet
(ii) the time taken by the bullet to come to rest .

Answers

Answered by ZzyetozWolFF
28

Answer:

i) F = 10^5 N

ii) t =  {10}^{ - 4} s

Explanation:

Given:

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \: m = 10g =  \dfrac{10}{1000} kg

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \: u =  {10}^{3}  \frac{m}{s}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \: v = 0

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \: s =  \dfrac{5}{100}

To Find:

(i) the resistive force exerted by sand on the Bullet

(ii) the time taken by the bullet to come to rest .

Procedure:

i)

  \bf \boxed{  {v}^{2} -  {u}^{2}  = 2a.s }

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \: 0 - ( {10 ^{3} )}^{2}  = 2.a \dfrac{5}{100 }

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \:a =  \dfrac{ - 1000 \times 1000}{2.5}  \times 100

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \: a =   {10}^{7}  {ms}^{ - 2}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \: F = m.a = 10^{5} N

ii)

 \bf {\boxed{v  = u + at}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \: 0 =  {10}^{3}  -  {10}^{7} t

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \: 10 {}^{7} t =  {10}^{3}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \: t =  \dfrac{ {10}^{3} }{ {10}^{7} }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \: t =  {10}^{ - 4} s

Extra points to remember for chapter Motion!!

  • Displacement is the distance in a particular direction. A vector quantity.

  • Speed is the rate of change of distance. S = D/T
Answered by yatharthanand2006
1

Answer:

Mark me as brainliest

...

Attachments:
Similar questions