Using set theory laws show that (B − A) ∪ (C − A) = (B ∪ C) – A
Answers
Answered by
1
For any x ∈ (B-A) or x ∈ (C - A) or both
When x∈(B-A) ⇒ (x∈B) ∧ (x∉A)
⇒ (x ∈ B ∪ C)∧ (x∉A)
⇒ x ∈ (B ∪ C) - A
When x∈(C-A) ⇒ (x∈C) ∧ (x∉A)
⇒ (x ∈ B ∪ C)∧ (x∉A)
⇒ x ∈ (B ∪ C) - A
Therefore, LHS ⊆ RHS
AWhen x∈(B-A) ⇒ (x∈B) ∧ (x∉A)
⇒ (x ∈ B ∪ C)∧ (x∉A)
⇒ x ∈ (B ∪ C) - A
And
For any x ∈ RHS , x ∈ (B∪C) and x∉A
When x ∈ B and x ∉ A
( x ∈ B) ∧ ( x ∉ A) ⇒ x ∈ B - A
( x ∈ B) ∧ ( x ∉ A) ⇒ x ∈ (B - A) ∪ (C - A)
When x ∈ C and x ∉ A
( x ∈ C) ∧ ( x ∉ A) ⇒ x ∈ C - A
( x ∈ C) ∧ ( x ∉ A) ⇒ x ∈ (B - A) ∪ (C - A)
Therefore, RHS ⊆ LHS
With LHS ⊆ RHS and RHS⊆ LHS, we can conclude that LHS = RHS
I hope it will help you.
Similar questions