Math, asked by abhisreegovindam, 9 months ago

using suitable identities factorise the following
 {x}^{3}  -  \frac{1}{8}  {y}^{3}

Answers

Answered by visheshagarwal153
3

\sf x^3 - \dfrac{1}{8} y^3

\sf \implies (x)^3 - \Bigg (\dfrac{1}{2} y \Bigg )^3

\rm \implies \Bigg (x-\dfrac{1}{2}y \Bigg ) \Bigg [(x)^2+\Bigg (\dfrac{1}{2}y \Bigg )^2 + x \times \dfrac{1}{2}y \Bigg ] \qquad ...[ since, \ a^3-b^3=(a-b)(a^2+b^2+ab)]

\rm \implies \Bigg (x-\dfrac{1}{2}y \Bigg ) \Bigg (x^2+\dfrac{1}{4}y^2 + \dfrac{1}{2}xy \Bigg )

Or

\rm \implies \Bigg (x-\dfrac{1}{2}y \Bigg ) \Bigg (x^2+\dfrac{1}{4}y^2 + \dfrac{xy}{2} \Bigg )

Hope it helps...

Similar questions