using suitable identities find the value of (-16)^3+(7)^3+(9)^3
Answers
Answer:
Use a suitable identity to get each of the following products: (i) \left(x+3 ight)\left(x+3 ight) (ii) \left(2y+5 ight)\left(2y+5 ight) (iii) \left(2a-7 ..
Step-by-step explanation:
Given :-
(-16)^3+(7)^3+(9)^3
To find:-
Using suitable identities find the value of (-16)^3+(7)^3+(9)^3 ?
Solution:-
Given that
(-16)^3+(7)^3+(9)^3
It is in the form of a^3 + b^3 + c^3
Where ,
a = -16
b= 7
c = 9
and
a + b + c
=> (-16)+(7)+(9)
=> (-16)+(16)
=> -16+16
=> 0
We have ,
a + b + c = 0
We know that
If a+ b + c = 0 then a^3 + b^3 + c^3 = 3abc
Now
We have
(-16)+(7)+(9) = 0 then (-16)^3 + (7)^3 + (9)^3
=> 3(-16)(7)(9)
=> - 3024
Answer:-
The value of (-16)^3 + (7)^3 + (9)^3 is -3024
Check:-
(-16)^3 + (7)^3 + (9)^3
=> (-4096) + (343)+(729)
=> (-4096)+(1072)
=> -4096+1072
=> - 3024
Verified the given relation.
Used Identity:-
If a+b+c=0 then a^3 + b^3 + c^3 = 3abc
Additional information:-
Some more Identities:-
- (a+b)^2=a^2+2ab+b^2
- (a-b)^2=a^2-2ab+b^2
- (a+b)(a-b)=a^2-b^2
- (x+a)(x+b)=x^2+(a+b)x+ab
- (a+b)^3 =a^3+3a^2b+3ab^2+b^3
- (a+b)^3 =a^3+3ab(a+b)+b^3
- (a-b)^3 =a^3-3a^2b+3ab^2-b^3
- (a-b)^3 =a^3-3ab(a-b)-b^3
- (a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca
- a^3+b^3=(a+b)(a^2-ab+b^2)
- a^3-b^3=(a-b)(a^2+ab+b^2)