Using suitable identity, find the products of the following
(i) (x+4)(x+10)
(ii) (x+8)(x-10)
(iii) (3x+4)(3x-5)
(iv) (y^2 + 3/2)(y^2 - 3/2)
(v) (3-2x) (3+2x)
Answers
Answered by
39
see ur answer in pic ..
Hope it's helps you..✌✔
Hope it's helps you..✌✔
Attachments:
puneeth040404:
wav nice
Answered by
61
:
(i) (x + 4) (x + 10)
: (x + a) (x + b) = x² + (a+b)x + ab
Here,
x = x , a = 4 , b = 10
=> (x)² + (4 + 10)x + 4*10
=> x² + 14x + 40
➖➖➖➖➖➖➖➖➖➖
(ii) (x + 8) (x - 10)
: (x + a) (x + b) = x² + (a+b)x + ab
Here,
x = x , a = 8 , b = (-10)
=> (x)² + { 8 + (-10) }x + 8*(-10)
=> x² + (8 - 10)x - 80
=> x² - 2x - 80
➖➖➖➖➖➖➖➖➖➖
(iii) (3x + 4) (3x - 5)
: (x + a) (x + b) = x² + (a+b)x + ab
Here,
x = 3x , a = 4 , b = (-5)
=> (3x)² + { 4 + (-5) }*3x + 4*(-5)
=> 9x² + (4 - 5)*3x - 20
=> 9x² + (-1)*3x - 20
=> 9x² - 3x - 20
➖➖➖➖➖➖➖➖➖➖
(iv) (y² + ) (y² - )
: (x + a) (x + b) = x² + (a+b)x + ab
Here,
x = y² , a = , b = (-)
=> (y²)² + { + (- }*y² + *(- )
=> + ( - )*y² + (- )
=> + 0*y² -
=> -
➖➖➖➖➖➖➖➖➖➖
(v) (3 - 2x) (3 + 2x)
: (x + a) (x + b) = x² + (a+b)x + ab
Here,
x = 3 , a = (-2x) , b = 2x
=> (3)² + { (-2x) + 2x }*3 + (-2x)*2x
=> 9 + 0*3 + (-4x²)
=> 9 - 4x²
=> - 4x² + 9
(i) (x + 4) (x + 10)
: (x + a) (x + b) = x² + (a+b)x + ab
Here,
x = x , a = 4 , b = 10
=> (x)² + (4 + 10)x + 4*10
=> x² + 14x + 40
➖➖➖➖➖➖➖➖➖➖
(ii) (x + 8) (x - 10)
: (x + a) (x + b) = x² + (a+b)x + ab
Here,
x = x , a = 8 , b = (-10)
=> (x)² + { 8 + (-10) }x + 8*(-10)
=> x² + (8 - 10)x - 80
=> x² - 2x - 80
➖➖➖➖➖➖➖➖➖➖
(iii) (3x + 4) (3x - 5)
: (x + a) (x + b) = x² + (a+b)x + ab
Here,
x = 3x , a = 4 , b = (-5)
=> (3x)² + { 4 + (-5) }*3x + 4*(-5)
=> 9x² + (4 - 5)*3x - 20
=> 9x² + (-1)*3x - 20
=> 9x² - 3x - 20
➖➖➖➖➖➖➖➖➖➖
(iv) (y² + ) (y² - )
: (x + a) (x + b) = x² + (a+b)x + ab
Here,
x = y² , a = , b = (-)
=> (y²)² + { + (- }*y² + *(- )
=> + ( - )*y² + (- )
=> + 0*y² -
=> -
➖➖➖➖➖➖➖➖➖➖
(v) (3 - 2x) (3 + 2x)
: (x + a) (x + b) = x² + (a+b)x + ab
Here,
x = 3 , a = (-2x) , b = 2x
=> (3)² + { (-2x) + 2x }*3 + (-2x)*2x
=> 9 + 0*3 + (-4x²)
=> 9 - 4x²
=> - 4x² + 9
Similar questions