Using suitable identity multiply 9x^2+25y^2+15xy+12x-20y+16 by 3x-5y -4
Answers
Answered by
275
Solution:-
(3x-5y-4) (9x²+25y²+15xy+12x-20y+16)
⇒ (3x-5y-4) (9x²+25y²+16+15xy-20y+12x)
⇒ {3x + (-5y) + (-4)} {(3x)² + (-5y)² + (-4)² - (3x) (-5y) - (-5y) (-4) - (-4) (3x)}
⇒ (3x)³ + (-5y)³ + (-4)³ - 3 (3x) (-5y) (-4) [a³ + b³ + c³ - 3abc = (a + b + c) (a² + b² + c² -ab - bc - ca)]
= 27x³ - 125y³ - 64 - 180xy
(3x-5y-4) (9x²+25y²+15xy+12x-20y+16)
⇒ (3x-5y-4) (9x²+25y²+16+15xy-20y+12x)
⇒ {3x + (-5y) + (-4)} {(3x)² + (-5y)² + (-4)² - (3x) (-5y) - (-5y) (-4) - (-4) (3x)}
⇒ (3x)³ + (-5y)³ + (-4)³ - 3 (3x) (-5y) (-4) [a³ + b³ + c³ - 3abc = (a + b + c) (a² + b² + c² -ab - bc - ca)]
= 27x³ - 125y³ - 64 - 180xy
Answered by
47
identity: [a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)
Similar questions