Math, asked by QaziFarheen, 8 months ago

using suitable identity show that (a-b) (a+b) + (b-c) (b+c) + (c-a) (c+a) =0​

Answers

Answered by mkumartati264
6

(a^2-b^2)+(b^2-c^2)+(c^2-a^2)

(a^2-a^2)+(b^2-b^2)+(c^2-c^2)

0+0+0=0

Answered by Anonymous
13

Answer:

IF u like mark is brainlist ✅✅✅✅

To prove :-

(a-b) (a+b) + (b-c) (b+c) + (c-a) (c+a) = 0

@nswer :-

L.S.H = (a-b) (a+b) + (b-c) (b+c) + (c-a) (c+a)

 ({a}^{2}  -  {b}^{2} ) +  ({b }^{2}  -  {c}^{2})  + ( {c}^{2}  -  {a}^{2} )

Using Identity :

(a - b) \: (a + b) =  {a}^{2}  -  {b}^{2}

Now ,

Simplify ,

  {a}^{2}  -  {b}^{2}  +  {b}^{2}  -  {c}^{2}  +  {c}^{2}  -  {a}^{2}

 = 0

Therefore , It is proved that LHS = RHS

Similar questions