using tan (a+b)=tana+tanb/1-tana tanb p.t tan75=(2+root3)
Answers
Answer:
Step-by-step explanation:
From the properties of trigonometric ratios :
tan45° = 1 ; tan30° = 1 / √3
Given,
tan( a + b ) = ( tana + tanb ) / ( 1 - tana.tanb )
Here,
⇒ tan75°
⇒ tan( 45° + 30° )
⇒ ( tan45° + tan30° ) / ( 1 - tan45°tan30° )
⇒ { 1 + ( 1 / √3 ) } / { 1 - ( 1 * 1 / √3 ) }
⇒ { ( √3 + 1 ) / √3 } / { 1 - ( 1 / √3 ) }
⇒ { ( √3 + 1 ) / √3 } / { ( √3 - 1 ) / √3 }
⇒ ( √3 + 1 ) / ( √3 - 1 )
Multiply as well as divide by ( √3 + 1 ):
⇒ ( √3 + 1 )( √3 + 1 ) / ( √3 - 1 )( √3 + 1 )
⇒ ( √3 + 1 )^2 / { ( √3 )^2 - ( 1 )^2 }
⇒ ( √3 + 1 )^2 / ( 3 - 1 )
⇒ ( 3 + 1 + 2√3 ) / 2
⇒ ( 4 + 2√3 ) / 2
⇒ 2 + √3
Hence proved.
Using tan (a+b) = (tan a+tan b)/( 1-tan a tan b) , Prove that tan 75° = (2 + √3)
- tan (a+b) = (tan a+tan b)/( 1-tan a. tan b ) ............(1)
- tan 75° = (2 + √3)
we calculate here, tan 75°
So,
➥ tan 75° = tan (45° + 30° )
Using first formula ,
➥ tan 75° = ( tan 45° + tan 30° )/ ( 1- tan 45°. tan 30°)
___________________
We know,
★ tan 45° = 1
★ tan 30° = 1/√3
____________________
Keep in above equation
➥tan 75° = (1 + 1/√3)/( 1- 1 × 1/√3}
➥tan 75° = ( √3 + 1) / ( √3 - 1)
Rationalize Denominator,
➥tan 75° = ( √3 + 1)(√3 + 1) /( √3 - 1)(√3 + 1)
➥tan 75° = [ ( √3)² + 1² + 2.1.√3 ] / [ (√3)² - (1)² ]
➥tan 75° = (3 + 1 + 2√3)/(3 - 1)
➥tan 75° = ( 4 + 2√3 ) / 2
Take common 2 in Numerator ,
➥tan 75° = 2 ( 2 + √3)/2
➥tan 75° = ( 2 + √3 )
That's prived.