Math, asked by nurbutashi3580, 1 year ago

Using the definition of derivative, how do you prove that (cos x)' = -sin x?

Answers

Answered by Anonymous
6
 \textsf{\underline {\Large {Derivative of cos x}}} :

 \textsf{\underline {\large {Proof}}} :

By using First Principle,

 \mathsf{f'(\:x\:) \:=\: {\displaystyle \lim_{h\to 0} {\dfrac{f(\:x\:+\:h\:) \:-\:f(\:x\:)}{h}}}}

 \mathsf{f'(\:x\:) \:=\: {\displaystyle \lim_{h\to 0}{\dfrac{cos(\:x\:+\:h\:) \:-\:cos\:x}{h}}}}

\mathsf{f'(\:x\:) \:=\: {\displaystyle \lim_{h\to 0}{\dfrac{1}{h}[-2\:sin{\dfrac{(\:x\:+\:h\:+\:x)}{2}sin{\dfrac{(\:x\:+\:h\:-\:x)}{2}}}}}}]

 \mathsf{f'(\:x\:) \:=\: {\displaystyle \lim_{h\to 0} {\dfrac{1}{h} [- \:2\:sin(\:x\:+\:{\dfrac{h}{2})\:sin\:({\dfrac{h} {2}}}}}})]

 \mathsf{f'(\:x\:) \:=\: {\displaystyle \lim_{h\to 0} [- \:2\:sin(\:x\:+\:{\dfrac{h}{2})\:*\:{\displaystyle \lim_{\dfrac{h}{2}\to 0}sin\:{\dfrac{\dfrac{h}{2}}{\dfrac{h}{2}}}}}}}

 \mathsf{f'(\:x\:) \:=\:-\:sin\:(\:x\:+\:0\:)\:*\:1}

 \boxed{\mathsf{f'(\:x\:) \:=\:-\:sin\:x}}

\textsf{\underline {\large{Formulae\:Used}}} :

 \boxed{\mathsf{cos(\:A\:+\:B\:)\:=\:-2\:sin{\dfrac{(\:A\:+\:B)}{2} sin{\dfrac{(\:A\:-\:B)}{2}}}}}

Similar questions