Math, asked by Shriprakash3401, 1 year ago

What is a telescoping infinite series?


Anonymous: ___k off

Answers

Answered by AvishantRoy
0

In mathematics, a telescoping series is a series whose partial sums eventually only have a fixed number of terms after cancellation.[1][2] The cancellation technique, with part of each term cancelling with part of the next term, is known as the method of differences.

For example, the series

{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n(n+1)}}} \sum _{{n=1}}^{\infty }{\frac {1}{n(n+1)}}

(the series of reciprocals of pronic numbers) simplifies as

{\displaystyle {\begin{aligned}\sum _{n=1}^{\infty }{\frac {1}{n(n+1)}}&{}=\sum _{n=1}^{\infty }\left({\frac {1}{n}}-{\frac {1}{n+1}}\right)\\{}&{}=\lim _{N\to \infty }\sum _{n=1}^{N}\left({\frac {1}{n}}-{\frac {1}{n+1}}\right)\\{}&{}=\lim _{N\to \infty }\left\lbrack {\left(1-{\frac {1}{2}}\right)+\left({\frac {1}{2}}-{\frac {1}{3}}\right)+\cdots +\left({\frac {1}{N}}-{\frac {1}{N+1}}\right)}\right\rbrack \\{}&{}=\lim _{N\to \infty }\left\lbrack {1+\left(-{\frac {1}{2}}+{\frac {1}{2}}\right)+\left(-{\frac {1}{3}}+{\frac {1}{3}}\right)+\cdots +\left(-{\frac {1}{N}}+{\frac {1}{N}}\right)-{\frac {1}{N+1}}}\right\rbrack \\{}&{}=\lim _{N\to \infty }\left\lbrack {1-{\frac {1}{N+1}}}\right\rbrack =1.\end{aligned}}}

In mathematics, a telescoping series is a series whose partial sums eventually only have a fixed number of terms after cancellation.[1][2] The cancellation technique, with part of each term cancelling with part of the next term, is known as the method of differences.

For example, the series

{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n(n+1)}}} \sum _{{n=1}}^{\infty }{\frac {1}{n(n+1)}}

(the series of reciprocals of pronic numbers) simplifies as

{\displaystyle {\begin{aligned}\sum _{n=1}^{\infty }{\frac {1}{n(n+1)}}&{}=\sum _{n=1}^{\infty }\left({\frac {1}{n}}-{\frac {1}{n+1}}\right)\\{}&{}=\lim _{N\to \infty }\sum _{n=1}^{N}\left({\frac {1}{n}}-{\frac {1}{n+1}}\right)\\{}&{}=\lim _{N\to \infty }\left\lbrack {\left(1-{\frac {1}{2}}\right)+\left({\frac {1}{2}}-{\frac {1}{3}}\right)+\cdots +\left({\frac {1}{N}}-{\frac {1}{N+1}}\right)}\right\rbrack \\{}&{}=\lim _{N\to \infty }\left\lbrack {1+\left(-{\frac {1}{2}}+{\frac {1}{2}}\right)+\left(-{\frac {1}{3}}+{\frac {1}{3}}\right)+\cdots +\left(-{\frac {1}{N}}+{\frac {1}{N}}\right)-{\frac {1}{N+1}}}\right\rbrack \\{}&{}=\lim _{N\to \infty }\left\lbrack {1-{\frac {1}{N+1}}}\right\rbrack =1.\end{aligned}}} \begin{align}

\sum_{n=1}^\infty \frac{1}{n(n+1)} & {} = \sum_{n=1}^\infty \left( \frac{1}{n} - \frac{1}{n+1} \right) \\

{} & {} = \lim_{N\to\infty} \sum_{n=1}^N \left( \frac{1}{n} - \frac{1}{n+1} \right) \\

{} & {} = \lim_{N\to\infty} \left\lbrack {\left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \cdots + \left(\frac{1}{N} - \frac{1}{N+1}\right) } \right\rbrack \\

{} & {} = \lim_{N\to\infty} \left\lbrack { 1 + \left( - \frac{1}{2} + \frac{1}{2}\right) + \left( - \frac{1}{3} + \frac{1}{3}\right) + \cdots + \left( - \frac{1}{N} + \frac{1}{N}\right) - \frac{1}{N+1} } \right\rbrack \\

{} & {} = \lim_{N\to\infty} \left\lbrack { 1 - \frac{1}{N+1} } \right\rbrack = 1.

\end{align}

Attachments:
Similar questions