Math, asked by A1jaytinajalMis6hma, 1 year ago

Using the formula, tan2A = (2tanA) / (1-tan 2 A), find the value of tan 60*; given that tan30* = 1/√3...

Answers

Answered by Undo
323
See the file to check the solution




Plz mark as brainliest
Attachments:
Answered by hotelcalifornia
130

Answer:

The value of \tan 60 ^ { \circ } = \sqrt { 3 }

To find:

The value of \tan 60 ^ { \circ }

Solution:

We know that  

\tan ( A + B ) = \frac { \tan A + \tan B } { ( 1 - \tan A \cdot \tan B ) }

When A=B

\tan ( A + A ) = \frac { \tan A + \tan A } { 1 - \tan ^ { 2 } A }

By using A = 30^{\circ}

\begin{array} { c } { \tan 60 ^ { \circ } = \frac { \tan 30 ^ { \circ } + \tan 30 ^ { \circ } } { 1 - \tan ^ { 2 } 30 ^ { \circ } } } \\\\ { \tan 60 ^ { \circ } = \frac { \frac { 1 } { \sqrt { 3 } + } \left( \frac { 1 } { \sqrt { 3 } } \right) } { \left( 1 - \left( \frac { 1 } { \sqrt { 3 } } \right) ^ { 2 } \right) } = \frac { \left( \frac { 2 } { \sqrt { 3 } } \right) } { \frac { 2 } { 3 } } = \frac { 2 } { \sqrt { 3 } } \times \frac { 3 } { 2 } = \sqrt { 3 } } \end{array}

Similar questions